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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING

MARCELLA BONAZZOLI AND XAVIER CLAEYS

ABSTRACT. We model time-harmonic acoustic scattering by an object composed of piece-wise homoge-
neous parts and an arbitrarily heterogeneous part. We propose and analyze new formulations that couple,
adopting a Costabel-type approach, boundary integral equations for the homogeneous subdomains with
volume variational formulations for the heterogeneous subdomain. This is an extension of the Costabel
FEM-BEM coupling to a multi-domain configuration, with cross-points allowed, i.e. points where three
or more subdomains are adjacent. While generally just the exterior unbounded subdomain is treated
with the BEM, here we wish to exploit the advantages of BEM whenever it is applicable, that is, for all
the homogeneous parts of the scattering object. Our formulation is based on the multi-trace formalism,
which initially was introduced for acoustic scattering by piece-wise homogeneous objects. Instead, here
we allow the wavenumber to vary arbitrarily in a part of the domain. We prove that the bilinear form
associated with the proposed formulation satisfies a Gårding coercivity inequality, which ensures stability
of the variational problem if it is uniquely solvable. We identify conditions for injectivity and construct
modified versions immune to spurious resonances.

1. Introduction

The efficient simulation of wave propagation problems in time-harmonic regime remains a computa-
tional challenge that is still the subject of intensive research effort. Propagation media are generally
heterogeneous, which is reflected by arbitrarily varying coefficients in the equations. Classical numeri-
cal methods to perform simulations in heterogeneous media usually rely on volume-type discretization
schemes such as finite elements. In many situations of practical relevance, material coefficients are
piece-wise constant in certain parts of the computational domain, and this feature can be exploited
to reformulate the problem by means of boundary integral operators as an equation defined only on
the boundary, called Boundary Integral Equation (BIE). Indeed, boundary element methods, which
are discretization schemes for BIEs, yield a significant reduction in the number of unknowns, higher
accuracy at least away from the boundary, and better robustness to high frequency compared with
finite elements. In addition, boundary integral operators can naturally deal with unbounded domains,
provided that the boundary is bounded.

This is the general idea of Finite Element Method - Boundary Element Method (FEM-BEM)
coupling, which aims at taking advantage of the versatility of the finite element method and the
computational efficiency of the boundary element method. There already exists a well established
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FIGURE 1. Example of geometric setting: composite medium, with ΩΣ arbitrarily
heterogeneous. Cross-points (red dots) are allowed.

literature on the numerical analysis of FEM-BEM coupling, in particular for time-harmonic acoustic
problems, with several possible FEM-BEM strategies including the Johnson-Nédélec coupling [15], the
Bielak-McCamy coupling [3] or the symmetric Costabel coupling [12, 13] (see e.g. [1] for an overview
of the three approaches). Another possible strategy relies on substructuring domain decomposition
and FETI-BETI methods [16, 2, 21, 6]. In the present contribution, we wish to focus on the Costabel
coupling, which appears interesting from a numerical analysis perspective because it naturally leads to
Gårding coercivity estimates.

Except for those related to domain decomposition, many of the contributions dedicated to FEM-BEM
coupling consider a simple geometric configuration where the computational domain is subdivided into
two parts separated by a single interface: one interior heterogeneous part and one exterior homogeneous
part. Multi-domain configurations with more than two subdomains are also of interest, and often
involve the presence of cross-points, i.e. points where three subdomains or more are adjacent (see for
instance the red points in Figure 1). From a numerical standpoint, as was clearly shown in [19, §4] by
detailed numerical examples, a careless treatment of cross-points may lead to a lack of consistency
of standard linear solvers such as GMRes. At the continuous level, the presence of cross-points is
problematic because in that case the interface shared by one subdomain with another can have a
boundary (made of cross-points). So, the operators giving the restriction to the interface (between
Dirichlet or Neumann trace spaces on the subdomain boundary) are not continuous, see e.g. [9, §6.2].
This prevents writing in a proper function space framework the most natural multi-domain formulations
that would use restriction operators. To avoid these, in the present contribution, we design and analyze
new multi-domain FEM-BEM formulations by means of the Multi-Trace Formalism (MTF), which was
introduced in [7, 9, 8] for piece-wise constant coefficients. Indeed, MTF allows for a clean treatment
of cross-points from the perspective of function spaces, and proves here to be perfectly fitted to the
Costabel coupling. These new formulations satisfy Gårding inequalities, which, in case of injectivity,
imply stability and quasi-optimal convergence results of conforming discretization methods.

Unfortunately, like the classical Costabel coupling, also its multi-domain versions may be affected
by the spurious resonances phenomenon, that is, the associated operator may be not injective, whereas
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the corresponding transmission problem is always well-posed. Therefore, we identify conditions
for injectivity, and then we construct modified versions immune to spurious resonances. This is a
generalization to multi-domain configurations of the strategy studied in [14] for the two-domain case.

This article is organized as follows. First, we present the acoustic scattering transmission problem
in Section 2, we recall the definitions of trace spaces and operators in Section 3, and classical results of
potential and boundary integral operator theory in Section 4. Then in Section 5 we introduce a functional
setting suited for the multi-domain configuration. After revisiting the classical Costabel coupling in
Section 6 for two subdomains, in Section 7 we propose a first multi-domain coupling formulation,
called single-trace FEM-BEM formulation, followed by a combined field version in Section 8 that is
immune to spurious resonances. The single-trace FEM-BEM formulation is preparatory to the more
flexible multi-trace FEM-BEM formulation, which is derived and analyzed in Section 9. Finally, a
multi-trace combined field FEM-BEM formulation is designed in Section 10.

Nomenclature

Geometric setting
Ω j Subdomains of Rd with homogeneous medium (with Ω0 unbounded)
n Number of bounded homogeneous subdomains
ΩΣ Subdomain of Rd with heterogeneous medium
Γ j Homogeneous subdomain boundary ∂Ω j
Σ Heterogeneous subdomain boundary ∂ΩΣ

Γ The skeleton, that is the union of subdomain interfaces, see (2.3)
κ j Wavenumber in Ω j (positive constant)
κΣ Wavenumber in ΩΣ (positive function)
Function spaces
H(∂Ω) Space of pairs of Dirichlet and Neumann traces on ∂Ω, see (3.2)
H(Γ) Multi-trace space: H(Γ) :=H(Γ0)×·· ·×H(Γn), see (5.1)
X(Γ) Single-trace space (subspace of H(Γ)), see (5.4)
X̃(Γ) Single-trace space with additional components on Σ, see (5.9)
X(ΩΣ,Γ) Subspace of H1(ΩΣ)×X(Γ) with Dirichlet conditions on Σ, see (5.10)
XM(ΩΣ,Γ) Subspace of H1(ΩΣ)×X(Γ) with generalized Robin conditions on Σ, see (8.2)
Ĥ(Γ) Multi-trace space with Neumann traces on Σ and no components on Γ0, see (9.1)
qH(Γ) Multi-trace space with Dirichlet traces on Σ and no components on Γ0̂̂H(Γ) Multi-trace space with both Dirichlet and Neumann traces on Σ, and no components on

Γ0, see (9.3)
Duality pairings
⟨ · , · ⟩∂Ω Duality pairing between Dirichlet and Neumann traces on ∂Ω

[ · , · ]∂Ω Self-duality pairing on H(∂Ω), see (3.3)
[ · , · ]Γ Self-duality pairing on H(Γ), see (5.3)
J · , ·K Duality pairing between Ĥ(Γ) and qH(Γ), see (9.2)
⦃ · , ·⦄ Self-duality pairing on ̂̂H(Γ), see (9.4)
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Trace operators
γΩ

D ,γΩ
N Interior Dirichlet and Neumann trace operators on ∂Ω, denoted γ

j
D,γ

j
N for Ω ≡ Ω j

γΩ
D,c,γ

Ω
N,c Exterior Dirichlet and Neumann trace operators on ∂Ω, denoted γ

j
D,c,γ

j
N,c for Ω ≡ Ω j

γΩ,γΩ
c Interior and exterior pairs of Dirichlet and Neumann trace operators on ∂Ω, denoted γ j,γ j

c
for Ω ≡ Ω j

[γΩ] Jump of the interior and exterior trace operators across ∂Ω, see (3.7)
{γΩ} Average of the interior and exterior trace operators across ∂Ω, see (3.7)
γ Global trace operator defined in (5.2)
T,TD,TN Traces on Σ induced by a tuple in X(Γ), see Proposition 5.1
Other operators
SLΩ

κ Single layer potential on ∂Ω (κ constant wavenumber), see (4.1), denoted SL
j
κ for Ω ≡ Ω j

DLΩ
κ Double layer potential on ∂Ω (κ constant wavenumber), see (4.2), denoted DL

j
κ for

Ω ≡ Ω j

GΩ
κ Total potential on ∂Ω (κ constant wavenumber), see (4.3), denoted G

j
κ for Ω ≡ Ω j

AΩ
κ 2×2 matrix of boundary integral operators (double layer, single layer, hypersingular and

adjoint double layer operators), see (4.9), denoted A
j
κ for Ω ≡ Ω j

A Block diagonal operator A := diag(A0
κ0
, . . . ,An

κn)̂̂A Full block operator, see (9.9)
aΣ Helmholtz bilinear form on ΩΣ, see (6.3)
FΣ Linear form for the source term on ΩΣ, see (6.3)
θ Operator θ(v,q) := (−v,q), for (v,q) ∈H(∂Ω)
Θ Operator Θ(v) := (θ(v0), . . . ,θ(vn)), for v= (v0, . . . ,vn) ∈H(Γ)

2. The transmission problem

We start by presenting the problem under study. We consider a non-overlapping domain decomposition

(2.1) Rd =
n⋃

j=0

Ω j ∪ ΩΣ,

where each subdomain will only be assumed Lipschitz regular [17, Def. 3.28] and connected, and all
subdomains except Ω0 are bounded. In addition, Rd \ΩΣ will also be assumed connected (so that ΩΣ

does not contain any hole). An example of such a configuration is given in Figure 1. We emphasize
that in such a geometrical setting the presence of cross-points (red points in Figure 1) is allowed.

We consider a propagation medium whose effective wavenumber, described by a function κ : Rd →
R+, varies in accordance with the subdomain decomposition in (2.1): we assume that

κ(xxx) = κ j ∀xxx ∈ Ω j, j = 0, . . . ,n, with κ j ∈ (0,+∞),

while in the subdomain ΩΣ the wavenumber is not assumed constant and may vary: κ(xxx) = κΣ(xxx),
with κΣ(xxx)> 0, ∀xxx ∈ ΩΣ.

Let the incident field Uinc ∈ H1
loc(Rd) satisfy ∆Uinc +κ2

0Uinc = 0 in Rd , where H1
loc(Rd) is the set

of functions whose restriction to any compact set ω ⊂ Rd belongs to H1(ω). Let the source term
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 5

f ∈ L2(Rd) be supported in ΩΣ. We are interested in solving the following problem modelling an
acoustic wave propagating in a heterogeneous medium

(2.2)

Find U ∈ H1
loc(Rd) such that

∆U +κ(xxx)2U =− f in Rd

U −Uinc is κ0-outgoing radiating.

In this problem, the third condition is the classical Sommerfeld radiation condition, see e.g. [20, §2.6.5]:
any function V is said to be k-outgoing radiating if limρ→∞

∫
∂Bρ

|∂ρV − ıkV |2 dσρ = 0, where ı =
√
−1,

Bρ is the ball centered at the origin of radius ρ and ∂ρ denotes the radial derivative. By standard results
of scattering theory, Problem (2.2) admits a unique solution, see e.g. [10, Theorem 8.7].

To solve such a problem, a standard numerical approach would rely on finite elements. The
computational efficiency could be improved by taking advantage of the piece-wise constant material
characteristics in the subdomains Ω j. In the present contribution, we wish to develop a multi-domain
FEM-BEM coupling strategy, where the wave equation is treated by means of boundary integral
operators in those parts of the computational domain where material characteristics are constant.
Compared to most of the existing literature on FEM-BEM coupling, an important novelty in the present
contribution lies in providing a rigorous analysis also in the presence of cross-points.

Let us introduce notations for boundaries and interfaces:

(2.3) Γ j := ∂Ω j, j = 0, . . . ,n, Σ := ∂ΩΣ, Γ := ∪n
j=0Γ j (the “skeleton”).

Note that Σ ⊂ Γ because each point of Σ belongs also to some Γ j, j = 0, . . . ,n. The first step toward a
multi-domain FEM-BEM formulation of problem (2.2) consists in decomposing the wave equation
according to (2.1), and imposing transmission conditions at interfaces:

(2.4)

∆U +κ
2
Σ(xxx)U =− f in ΩΣ

∆U +κ
2
j U = 0 in Ω j

U |Γ j −U |Γk = 0

∂nnn jU |Γ j +∂nnnkU |Γk = 0

U |Γ j −U |Σ = 0

∂nnn jU |Γ j +∂nnnΣ
U |Σ = 0

U −Uinc is κ0-outgoing radiating.

Here, all traces are taken from the interior of subdomains, and nnn j, j = 0 . . .n (resp. nnnΣ) are the unit
normal vector fields on Γ j directed toward the exterior of Ω j (resp. ΩΣ). Neumann traces are defined
by ∂nnn jU |Γ j := nnn j ·∇U |Γ j (resp. ∂nnnΣ

U |Σ := nnnΣ ·∇U |Σ).

3. Trace spaces and operators

Discussing transmission conditions requires paying thorough attention to function spaces, trace spaces
and operators. In all this section, Ω refers to a generic Lipschitz domain that is either bounded or such
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 6

that Rd \Ω is bounded, and nnnΩ is the unit normal vector field on ∂Ω systematically directed toward
the exterior of Ω.

First of all, we use classical notations for the following elementary function spaces of volume
functions:

(3.1)

H1(Ω) := {V ∈ L2(Ω) | ∇V ∈ L2(Ω)} ,
H(div,Ω) := {vvv ∈ L2(Ω)d | div(vvv) ∈ L2(Ω)} ,
H1(∆,Ω) := {V ∈ H1(Ω) | ∆V ∈ L2(Ω)} .

They are equipped with their canonical norms ∥V∥2
H1(Ω)

:= ∥V∥2
L2(Ω)

+ ∥∇V∥2
L2(Ω)

, ∥vvv∥2
H(div,Ω)

:=

∥vvv∥2
L2(Ω)

+ ∥div(vvv)∥2
L2(Ω)

, and ∥V∥2
H1(∆,Ω)

:= ∥V∥2
H1(Ω)

+ ∥∆V∥2
L2(Ω)

. With these norms, the spaces

(3.1) admit a Hilbert structure. If H(Ω) is any of the spaces above, we set Hloc(Ω) := {V | ϕV ∈
H(Ω) ∀ϕ ∈ C ∞

c (Rd)}, where C ∞
c (Rd) is the space of C ∞ functions with compact support.

We introduce the interior Dirichlet trace operator γΩ
D and the interior Neumann trace operator γΩ

N ,
defined for smooth functions ϕ ∈ C ∞(Rd) by

γ
Ω
D (ϕ) := ϕ|∂Ω, γ

Ω
N (ϕ) := nnnΩ ·∇ϕ|∂Ω.

These definitions are extended by density and continuity to trace operators γΩ
D : H1

loc(Ω)→ H1/2(∂Ω),
γΩ

N : H1
loc(∆,Ω)→ H−1/2(∂Ω), where the Dirichlet trace space H1/2(∂Ω) is defined as the completion

of {ϕ|∂Ω,ϕ ∈ C ∞(Rd)} with respect to the Slobodeckii norm (see e.g. [17, Chap. 2])

∥ϕ∥2
H1/2(∂Ω)

:=
∫

∂Ω×∂Ω

|ϕ(xxx)−ϕ(yyy)|2
|xxx− yyy|d dσ(xxx,yyy),

and the Neumann trace space H−1/2(∂Ω) is the dual space of H1/2(∂Ω). The corresponding duality
pairing will be denoted by ⟨p,v⟩∂Ω ≡ ⟨v, p⟩∂Ω := p(v) for v ∈ H1/2(∂Ω) and p ∈ H−1/2(∂Ω), and we
shall take

∥p∥H−1/2(∂Ω) := sup
v∈H1/2(∂Ω)\{0}

|⟨p,v⟩∂Ω|
∥v∥H1/2(∂Ω)

as norm for the Neumann trace space. We also introduce operators and spaces for pairs of Dirichlet
and Neumann traces, defined by γΩ(V ) := (γΩ

D (V ),γΩ
N (V )) and

(3.2)
γ

Ω := (γΩ
D ,γΩ

N ) : H1(∆,Ω)→H(∂Ω) where

H(∂Ω) := H1/2(∂Ω)×H−1/2(∂Ω).

In contrast with Dirichlet and Neumann trace operators γΩ
D ,γΩ

N , the trace operator γΩ is not really
standard, but we shall often use it for compact notation in our analysis. The space of pairs of
Dirichlet-Neumann traces H(∂Ω) will be equipped with the Cartesian product norm ∥(v,q)∥2

H(∂Ω)
:=

∥v∥2
H1/2(∂Ω)

+ ∥q∥2
H−1/2(∂Ω)

. It is put in duality with itself through the following skew-symmetric
bilinear pairing

(3.3) [(u, p),(v,q)]∂Ω := ⟨u,q⟩∂Ω −⟨p,v⟩∂Ω

for all (u, p),(v,q) ∈ H(∂Ω). We underline that no complex conjugation comes into play in this
definition. Note that throughout the paper Dirichlet traces are denoted by u,v,w and Neumann traces
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 7

by p,q,r, while capital letters like U,V are used to indicate scalar functions on volume domains, and
small bold letters like vvv, ppp,qqq are used for vector fields. In this section and the following one, we use
gothic symbols u,v,w to denote pairs of Dirichlet-Neumann traces, that is elements of H(∂Ω). We
have the inequality |[u,v]∂Ω| ≤ ∥u∥H(∂Ω)∥v∥H(∂Ω) for all u,v ∈H(∂Ω).

Setting θ(v,q) := (−v,q), we state simple identities that will be used several times in the following:
for all u= (u, p), v= (v,q) ∈H(∂Ω)

[u,θ(v)]∂Ω = ⟨u,q⟩∂Ω + ⟨p,v⟩∂Ω,(3.4)

[u,θ(v)]∂Ω − [u,v]∂Ω = 2⟨p,v⟩∂Ω,(3.5)

[u,θ(v)]∂Ω +[u,v]∂Ω = 2⟨u,q⟩∂Ω.(3.6)

Together with the operators γΩ
D ,γΩ

N ,γΩ, for which traces are taken from the interior of the domain Ω,
similar operators can be defined for traces taken from the exterior of Ω, and will be denoted by

γ
Ω
D,c : H1

loc(Rd \Ω)→ H1/2(∂Ω),

γ
Ω
N,c : H1

loc(∆,Rd \Ω)→ H−1/2(∂Ω),

γ
Ω
c := (γΩ

D,c,γ
Ω
N,c) : H1

loc(∆,Rd \Ω)→H(∂Ω).

When considering the trace operator γΩ
N,c, the normal vector is still directed toward the exterior of Ω.

Finally, we will also need jump and average traces:

(3.7) [γΩ] := γ
Ω − γ

Ω
c , {γ

Ω} := (γΩ + γ
Ω
c )/2.

In the context of the multi-domain configuration (2.3), for the sake of brevity, we shall write
γ

j
D (resp. γ

j
N,γ

j,γ j
D,c,γ

j
N,c,γ

j
c ) instead of γ

Ω j
D (resp. γ

Ω j
N ,γΩ j ,γ

Ω j
D,c,γ

Ω j
N,c,γ

Ω j
c ). We shall adopt a similar

convention for traces on Σ, writing γΣ
∗ instead of γ

ΩΣ∗ with ∗= D,N and so on.

4. Review of potential and boundary integral operators

In this section, we recall, using compact notation, classical results about boundary integral formulations
for the Helmholtz equation in Lipschitz domains. For more details and proofs see for instance [22,
Chap. 3]. As in the previous section, here Ω denotes a generic Lipschitz domain, which is either
bounded or the complement of a bounded domain.

Let the function Gκ : Rd \ {0} → C be the κ-outgoing radiating fundamental solution or Green
kernel for the Helmholtz operator −∆−κ2, for a given constant wavenumber κ ∈ (0,+∞). In particular
for Rd = R3 we have Gκ(xxx) = exp(iκ|xxx|)/(4π|xxx|). For any xxx ∈ Rd \∂Ω, and any v= (v,q) ∈H(∂Ω),
define potential operators1

SLΩ
κ (q)(xxx) :=

∫
∂Ω

q(yyy) Gκ(xxx− yyy)dσ(yyy),(4.1)

1Note that the choice of sign in the double layer potential differs from the one usually adopted in the literature, in order to
maintain symmetry in the definition of GΩ

κ (and consequently in the representation formula).
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 8

DLΩ
κ (v)(xxx) :=

∫
∂Ω

v(yyy) nnnΩ(yyy) · (∇Gκ)(xxx− yyy)dσ(yyy)(4.2)

=−
∫

∂Ω

v(yyy) nnnΩ(yyy) ·∇yyy(Gκ(xxx− yyy))dσ(yyy),

GΩ
κ (v)(xxx) := DLΩ

κ (v)(xxx)+SLΩ
κ (q)(xxx),(4.3)

where the first two operators are called single and double layer potentials. The total potential GΩ
κ maps

continuously H(∂Ω) into2 H1
loc(∆,Ω)×H1

loc(∆,Rd\Ω) (see [22, Thm. 3.1.16]), so that the traces of
GΩ

κ (v) are properly defined. This operator can be used to write a representation formula for the solution
to the homogeneous Helmholtz equation in terms of the Dirichlet and Neumann traces of the solution
(see [22, Thm. 3.1.6]):

Proposition 4.1 (Representation formulas). Let U ∈ H1
loc(Ω) satisfy −∆U −κ2U = 0 in Ω. If Ω is

unbounded, assume in addition that U is κ-outgoing radiating. Then we have the representation
formula

(4.4) GΩ
κ (γ

Ω(U))(xxx) = 1Ω(xxx)U(xxx).

Similarly, let V ∈ H1
loc(Rd\Ω) satisfy −∆V −κ2V = 0 in Rd\Ω, as well as the Sommerfeld radiation

condition if Ω is bounded. Then we have

(4.5) GΩ
κ (γ

Ω
c (V ))(xxx) =−1Rd\Ω

(xxx)V (xxx).

Here, 1Ω (resp. 1Rd\Ω
) is the characteristic function of Ω (resp. Rd \Ω). In addition to the representation

formulas above, the potential operator GΩ
κ satisfies the so-called jump relations [22, Thm. 3.3.1], which

describe the relationship between interior and exterior traces of GΩ
κ . Here we express these relations

through the following synthetic identity

(4.6) [γΩ]◦GΩ
κ = Id,

where Id is the identity map on H(∂Ω) and the jump [ · ] is defined in (3.7).
Any U = GΩ

κ (u) for u ∈H(∂Ω) is a κ-outgoing radiating solution to the homogeneous Helmholtz
equation in Ω with wavenumber κ , hence we can apply to it the representation formula (4.4). Taking
the interior traces of this formula leads to γΩ ◦GΩ

κ (γ
Ω ◦GΩ

κ (u)) = γΩ ◦GΩ
κ (u), and since u was chosen

arbitrarily in H(∂Ω), this finally rewrites

(4.7) (γΩ ◦GΩ
κ )

2 = (γΩ ◦GΩ
κ )

which is a synthetic form of the four classical interior Caldéron identities. The operator γΩ ◦GΩ
κ

is a continuous projector, called the interior Calderón projector of Ω. This actually provides a
characterization of traces of solutions to the homogeneous Helmholtz equation, which are called
Cauchy data (see [22, §3.6]):

2Here we consider that V ∈ H1
loc(∆,Ω)×H1

loc(∆,Rd\Ω) if and only if V |Ω ∈ H1
loc(∆,Ω) and V |Rd\Ω

∈ H1
loc(∆,Rd\Ω).
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 9

Proposition 4.2 (Definition and characterization of Cauchy data). We define the space of Cauchy data
of Ω

(4.8)
Cκ(Ω) :={γ

Ω(U) ∈H(∂Ω) |U ∈ H1
loc(Ω),−∆U −κ

2U = 0 in Ω,

and U is κ-outgoing radiating if Ω is unbounded }.
The range of the interior Calderón projector γΩ ◦GΩ

κ coincides with Cκ(Ω). More precisely, for any
u ∈H(∂Ω) we have γΩ ◦GΩ

κ (u) = u ⇐⇒ u ∈ Cκ(Ω).

Analogous results, obtained by taking exterior traces of the representation formula (4.5), hold for
exterior Cauchy data.

Applying traces to potential operators yields boundary integral operators: in our compact notation
we will use

(4.9) AΩ
κ

:= {γ
Ω}◦GΩ

κ ,

where the average {·} is defined in (3.7). The operator AΩ
κ continuously maps H(∂Ω) into H(∂Ω). It

consists in a 2×2 matrix of boundary integral operators (double layer, single layer, hypersingular and
adjoint double layer operators, see e.g. [22, §3.6]). In this article, we shall not need to refer individually
to any of its entries. Simple consequences of the jump relations (4.6) are

γ
Ω ◦GΩ

κ = AΩ
κ + Id/2,(4.10)

γ
Ω
c ◦GΩ

κ = AΩ
κ − Id/2.(4.11)

So, identity (4.7) implies (AΩ
κ )

2 = Id/4. The operator AΩ
κ , for Ω = Ω j, j = 0, . . . ,n, will play a pivotal

role in our analysis. We now recall a few properties of AΩ
κ , which are well established in the literature.

First, this operator satisfies a generalized Gårding inequality:

Proposition 4.3 (Generalized Gårding inequality). Recall the operator θ(v,q) := (−v,q). There exist
a compact operator K : H(∂Ω)→H(∂Ω) and a constant α > 0 such that for all u ∈H(∂Ω) we have

Re
{
[(AΩ

κ +K )u,θ(u)]∂Ω

}
≥ α∥u∥2

H(∂Ω).

Although well known (see for example [23, Thm. 3.9]), the proof of this result is instructive, so we
include it in Proposition A.1 in the appendix. Next, remarkable symmetry properties were proved in [8,
Lemma 3.6–3.7]: for any u,v ∈H(∂Ω) we have

[AΩ
κ (u),v]∂Ω = [AΩ

κ (v),u]∂Ω.

Finally, we recall a useful result about the sign of the imaginary part of the quadratic form u 7→
[AΩ

κ (u),u]∂Ω:

Proposition 4.4. Assume that either Ω ⊂Rd is bounded or Rd \Ω is bounded. Then for all u∈H(∂Ω),
we have Im{[AΩ

κ (u),u]∂Ω} ≥ 0.

The proof of this result can be deduced for example from the positivity of the capacity operator stated
in [20, Thm. 5.3.5]. However, since we are not able to find a definitive proof in the current literature,
we provide it in Proposition A.2 in the appendix.

Once again, in the context of the multi-domain configuration (2.3), we shall write SL
j
κ , DL j

κ , G j
κ , A j

κ

(resp. SLΣ
κ , DLΣ

κ , GΣ
κ , AΣ

κ ) instead of SL
Ω j
κ , DL

Ω j
κ , G

Ω j
κ , A

Ω j
κ (resp. SLΩΣ

κ , DLΩΣ
κ , GΩΣ

κ , AΩΣ
κ ).
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 10

5. Trace spaces for multi-domain scattering

Based on previous contributions about multi-trace formalism [7, 8], we introduce function spaces
specific to multi-domain configurations. A natural trace space on the skeleton Γ (2.3) is the multi-trace
space defined as the Cartesian product of local trace spaces on the homogeneous subdomains boundary:

(5.1) H(Γ) :=H(Γ0)×·· ·×H(Γn),

recalling that in (3.2) we have set H(Γ j) := H1/2(Γ j)×H−1/2(Γ j) (note that no components on Σ are
involved in H(Γ)). The multi-trace space above is equipped with the Cartesian product norm defined
by

∥v∥2
H(Γ) :=

n

∑
j=0

∥v j∥2
H(Γ j)

, for v= (v0, . . . ,vn) ∈H(Γ).

Throughout the paper we use gothic symbols u,v,w to denote tuples of Dirichlet-Neumann traces,
with a subscript indicating the pair of traces on a certain subdomain boundary. The trace operators γ j

local to subdomains can be bundled to form a global trace operator on the skeleton Γ

(5.2) γ(U) := (γ0(U), . . . ,γn(U)),

which naturally maps continuously onto the multi-trace space γ : H1(∆,Ω0)×·· ·×H1(∆,Ωn)→H(Γ).
Moreover, the multi-trace space (5.1) is naturally equipped with the non-degenerate bilinear pairing
[· , ·]Γ : H(Γ)×H(Γ)→ C defined by

(5.3) [u,v]Γ :=
n

∑
j=0

[u j,v j]Γ j , for u= (u0, . . . ,un),v= (v0, . . . ,vn) ∈H(Γ).

We also need to introduce a subspace of (5.1) consisting of tuples of traces that comply with Dirichlet
and Neumann transmission conditions through each interface Γ j ∩Γk: the so-called single-trace space
X(Γ)⊂H(Γ) is a closed subspace of H(Γ) defined as follows

(5.4)
X(Γ) := {(u j, p j) j=0,...,n ∈H(Γ) | ∃V ∈ H1(Rd), qqq ∈ H(div,Rd)

such that u j =V |Γ j and p j = nnn j ·qqq|Γ j ∀ j = 0, . . . ,n}.
In contrast to other articles about multi-trace formalism such as [9, 7], Definition (5.4) for X(Γ) stems
from the decomposition Rd \ΩΣ = ∪n

j=0Ω j, which is not a partition of the full space Rd , i.e. the
subdomain ΩΣ is assumed non-empty here. Because of this, the single-trace space X(Γ) obeys a
modified polarity identity involving a residual term localized on Σ, the boundary of the heterogeneous
subdomain ΩΣ, see (2.3). This property, stated in the following proposition, will play a crucial role in
our analysis.

Proposition 5.1 (Modified polarity identity). For any u= (u j, p j) j=0,...,n ∈ X(Γ) stemming from the
traces u j =V |Γ j and p j = nnn j ·qqq|Γ j of some V ∈ H1(Rd), qqq ∈ H(div,Rd), define

(5.5) T(u) := (V |Σ,nnnΣ ·qqq|Σ).
Then T(u) does not depend on the particular liftings V,qqq, and the formula above defines a continuous
and surjective operator T : X(Γ)→H(Σ) satisfying the modified polarity identity

(5.6) [u,v]Γ =−[T(u),T(v)]Σ ∀u,v ∈ X(Γ).

Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

23 Apr 2024 02:54:46 PDT
230515-Bonazzoli Version 2 - Submitted to J. Integr. Eq. Appl.



MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 11

This proposition was established in [8, Prop. 3.1 and Prop. 3.2], where ΩΣ represented an impenetrable
part of the propagation medium. The operator T should be understood as a trace operator on Σ.
Subsequently, we shall decompose the operator T into Dirichlet and Neumann components, setting
T(u) = (TD(u),TN(u)), with TD : X(Γ) → H1/2(Σ) and TN : X(Γ) → H−1/2(Σ) continuous. The
modified polarity identity leads to a variational characterization of X(Γ):

Lemma 5.2 (Variational characterization of X(Γ)). For any u ∈H(Γ), we have u ∈X(Γ) if and only if
[u,v]Γ = 0 for all v ∈ X(Γ) satisfying T(v) = 0.

Proof. First, as a direct application of Proposition 5.1, for any u ∈ X(Γ) and any v ∈ X(Γ) with
T(v) = 0, we have [u,v]Γ =−[T(u),0]Σ = 0.

Reciprocally, take an arbitrary u ∈ H(Γ), and assume that [u,v]Γ = 0 for all v ∈ X(Γ) satisfying
T(v) = 0. Consider U j ∈ H1(Ω j), ppp j ∈ H(div,Ω j) such that u= (U j|Γ j ,nnn j · ppp j|Γ j) j=0,...,n, and define
U ∈ L2(Rd \ΩΣ) and ppp ∈ L2(Rd \ΩΣ)

d by U |Ω j :=U j and ppp|Ω j := ppp j.
We need to prove that U ∈ H1(Rd \ΩΣ) and ppp ∈ H(div,Rd \ΩΣ) to conclude. We prove the result

only for U , since the proof proceeds in a completely analogous manner for ppp. It suffices to show the
existence of C > 0 such that∣∣∣∣∫Rd\ΩΣ

U div(ϕϕϕ)dxxx
∣∣∣∣≤C∥ϕϕϕ∥L2(Rd) ∀ϕϕϕ ∈ C ∞

c (Rd \ΩΣ)
d,

where C ∞
c (Rd \ΩΣ) := {V ∈ C ∞(Rd) | supp(V ) bounded, V = 0 in ΩΣ}. Pick ϕϕϕ ∈ C ∞

c (Rd \ΩΣ)
d

arbitrary and set v = (0,nnn j ·ϕϕϕ|Γ j) j=0,...,n. By construction we have v ∈ X(Γ) and T(v) = 0, since
nnnΣ ·ϕϕϕ|Σ = 0. Next, decomposing the integral according to Rd \ΩΣ = Ω0 ∪ ·· · ∪Ωn, and using the
identity [u,v]Γ = 0, we have

∫
Rd\ΩΣ

U div(ϕϕϕ)dxxx = ∑
n
j=0

∫
Ω j

U j div(ϕϕϕ)dxxx = −∑
n
j=0

∫
Ω j

ϕϕϕ · ∇U j dxxx,
which leads to the conclusion. □

Let us point out that any tuple (u j, p j) j=0,...,n ∈ X(Γ) satisfies u j = uk and p j =−pk on Γ j ∩Γk. This
observation and Lemma 5.2 lead to alternative ways of writing the transmission conditions:

Lemma 5.3 (Characterizations of transmission conditions). For any U ∈ L2
loc(Rd) such that U |ΩΣ

∈
H1

loc(∆,ΩΣ) and U |Ω j ∈ H1
loc(∆,Ω j), j = 0 . . . ,n, we have that U satisfies the transmission conditions

of Problem (2.4), that is, U ∈ H1
loc(∆,Rd) if and only if

(5.7) γ(U) ∈ X(Γ) and T(γ(U)) = γ
Σ(U),

or equivalently

(5.8) [γ(U),v]Γ +[γΣ(U),T(v)]Σ = 0 for all v ∈ X(Γ).

Proof. For characterization (5.7), it is enough to combine the observation above with the definitions of
T in (5.5) and of the global trace operator (5.2).

Now, we prove that (5.8) is a variational reformulation of (5.7). A direct application of the modified
polarity identity (5.6) shows that (5.7) implies (5.8). Conversely, suppose that (5.8) holds true. In
particular, if we take v ∈ X(Γ) with T(v) = 0, then [γ(U),v]Γ = 0 for all v ∈ X(Γ) with T(v) = 0.
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ΩΣ Ω0

nΣ

n0

FIGURE 2. Geometric setting for the classical Costabel coupling.

According to Lemma 5.2, this implies that γ(U) ∈ X(Γ). Moreover, considering now a generic
v ∈ X(Γ) and applying the polarity identity (5.6) to the first term of (5.8), we get

−[T(γ(U)),T(v)]Σ +[γΣ(U),T(v)]Σ = 0 for all v ∈ X(Γ),

that yields T(γ(U)) = γΣ(U) because T surjectively maps X(Γ) onto H(Σ). □

This characterization of transmission conditions motivates the introduction of a variant of the
single-trace space involving the additional subdomain boundary Σ:

(5.9) X̃(Γ) := {(u,T(u)) | u ∈ X(Γ)} ,
which stems from the decomposition of the full space Rd = ∪n

j=0 Ω j ∪ΩΣ as in [7]. With this space
we can rephrase once more: U satisfies the transmission conditions of Problem (2.4) if and only if
(γ(U),γΣ(U)) ∈ X̃(Γ).

Remark 5.4. A crucial procedure to construct an element of X̃(Γ) is the following. Given j and a
function V ∈ H1

loc(∆,Rd\Ω j), we set vk = γk(V ) for k ̸= j, v j = γ
j

c (V ) and vΣ = T(v) = γΣ(V ). Then
(v0, . . . ,vn,vΣ) ∈ X̃(Γ).

We conclude this section by introducing a variational space adapted to the presence of heterogeneities
in ΩΣ, namely

(5.10) X(ΩΣ,Γ) := {(U,u) ∈ H1(ΩΣ)×X(Γ) | γ
Σ
D (U) = TD(u)} ,

i.e. we impose that on Σ the Dirichlet trace of a “heterogeneous” component U defined in ΩΣ matches
the Dirichlet trace TD(u) of a single-trace tuple u defined on the skeleton Γ. This is clearly a closed
subspace of H1(ΩΣ)×X(Γ) for the inherited Cartesian product norm given by (U,u) 7→ (∥U∥2

H1(ΩΣ)
+

∥u∥2
H(Γ))

1/2.

6. Review of the classical Costabel coupling

We revisit the classical Costabel symmetric coupling [12, §7][13], writing the formulation in the
compact notation introduced in the previous sections. This will also allow the reader to get more
acquainted with our notation.
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 13

The classical Costabel coupling gives a symmetric variational formulation of the transmission
problem (2.4) in the case n = 0, i.e. Rd = Ω0 ∪ΩΣ, Γ = Γ0 = Σ (see Figure 2), which combines direct
boundary integral equations3 for Ω0 with a volume variational formulation for ΩΣ. Note that in our
presentation, in contrast to what is usually done in the literature, for Ω0 we take its own outward-
pointing normal vector nnn0. This choice is more suitable in view of the extension to the multi-domain
case. In the two-subdomain case of the present section we have X(Γ) =H(Γ) =H(Γ0) =H(Σ) and

(6.1) X(ΩΣ,Γ) = {(V,(γΣ
D (V ),q)) |V ∈ H1(ΩΣ), q ∈ H−1/2(Σ)}

so X(ΩΣ,Γ) is naturally isomorphic to H1(ΩΣ)×H−1/2(Σ), which is the space where the Costabel
coupling is usually posed.

Now consider U ∈ H1
loc(Rd) solution to the transmission problem (2.4). We are going to reformulate

this problem equivalently in terms of the pair

(6.2) (U |ΩΣ
,u) ∈ X(ΩΣ,Γ), where u= γ

0(U).

Thus, the Dirichlet transmission condition γΣ
D (U) = γ0

D(U) shall be enforced strongly through the choice
of X(ΩΣ,Γ) as variational space (recall its definition in (5.10)). To reformulate (2.4) variationally, we
first deal with the Helmholtz equation satisfied by U in ΩΣ. Pick an arbitrary test pair (V,v)∈X(ΩΣ,Γ)
and, after multiplying the equation by V , apply Green’s formula in ΩΣ. This leads to a variational
identity involving a boundary term:

(6.3)

aΣ(U,V )−⟨γΣ
N (U),γΣ

D (V )⟩Σ = FΣ(V )

where aΣ(U,V ) :=
∫

ΩΣ
(∇U ·∇V −κ2

Σ
(xxx)UV )dxxx

FΣ(V ) :=
∫

ΩΣ
fV dxxx.

Next, to rewrite the boundary term, we observe that γΣ
D (V ) = TD(v) because (V,v) ∈ X(ΩΣ,Γ), and

γΣ
N (U) = TN(u) by the Neumann transmission condition and (6.2). Hence, recalling the operator

θ(v,q) := (−v,q), we apply identity (3.5), together with the polarity property (5.6) using u,v ∈ X(Γ),
so that we obtain

(6.4)

−⟨γΣ
N (U),γΣ

D (V )⟩Σ =−⟨TN(u),TD(v)⟩Σ

=−[T(u),θ(T(v))]Σ/2+[T(u),T(v)]Σ/2

=+[u,θ(v)]Γ/2+[T(u),T(v)]Σ/2.

Therefore, Equation (6.3) becomes

(6.5) aΣ(U,V )+ [u,θ(v)]Γ/2+[T(u),T(v)]Σ/2 = FΣ(V ).

Now, we wish to exploit boundary integral operators in Ω0. Since Uinc solves the homogeneous
Helmholtz equation with wavenumber κ0 in ΩΣ = Rd\Ω0 and γ0(Uinc) = γ0

c (Uinc), the “exterior”
representation formula (4.5) is applicable to Uinc in Ω0 and yields γ0G0

κ0
(γ0(Uinc))= γ0G0

κ0
(γ0

c (Uinc))=
0. As U −Uinc solves the homogeneous Helmholtz equation in Ω0 and satisfies the associated
κ0-radiation condition, the representation formula (4.4) is applicable to U −Uinc in Ω0 and yields

3A boundary integral equation is of direct type if its unknowns are Dirichlet/Neumann traces of the solution to the related
boundary value problem.
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 14

γ0(U −Uinc) = γ0G0
κ0
(γ0(U −Uinc)) = γ0G0

κ0
(γ0(U)). Then, making use of (4.10) and u= γ0(U), we

get

(6.6) u/2 = A0
κ0
(u)+ γ

0(Uinc).

This is a reformulation of the Helmholtz equation satisfied by U in Ω0 based on both Dirichlet and
Neumann traces of the representation formula. Note that, in contrast to the present Costabel coupling,
the Johnson-Nédélec coupling would involve just the Dirichlet one. Plugging (6.6) into (6.5), we
finally obtain the variational formulation of the Costabel symmetric coupling posed in X(ΩΣ,Γ):

(6.7)

find (U,u) ∈ X(ΩΣ,Γ) such that

aΣ(U,V )+ [A0
κ0
(u),θ(v)]Γ +[T(u),T(v)]Σ/2

= FΣ(V )− [γ0(Uinc),θ(v)]Γ ∀(V,v) ∈ X(ΩΣ,Γ).

Note that all the four classical boundary integral operators, which are the components of the block
operator A0

κ0
(see (4.9)), are involved in the Costabel coupling. In this two-subdomain configuration,

where Γ = Γ0 = Σ and nnn0 =−nnnΣ, we have T((u, p)) = (u,−p) (see definition (5.5) of T), so that the
term +[T(u),T(v)]Σ/2 can be simplified as −[u,v]Σ/2. Moreover, by the observation in (6.1) and
recalling the definition of θ , formulation (6.7) can be written more explicitly as:

find U ∈ H1(ΩΣ), p ∈ H−1/2(Σ) such that∫
ΩΣ

(∇U ·∇V −κ
2
Σ(xxx)UV )dxxx+[A0

κ0
((γΣ

DU, p)),(−γ
Σ
DV,q)]Σ − [(γΣ

DU, p),(γΣ
DV,q)]Σ/2

=
∫

ΩΣ

fV dxxx − [γ0(Uinc),(−γ
Σ
DV,q)]Σ ∀V ∈ H1(ΩΣ), q ∈ H−1/2(Σ).

Now, let aC : X(ΩΣ,Γ)×X(ΩΣ,Γ)→ C designate the bilinear form on the left-hand side of (6.7).
The bilinear form aΣ(·, ·) satisfies a Gårding inequality, as well as [A0

κ0
(·),θ(·)]Γ (see Proposition 4.3).

Hence, since Re{[T(v),T(v)]Σ}= 0, we conclude, as in [14], that aC(·, ·) satisfies a Gårding inequality:
there exist a compact bilinear form K : X(ΩΣ,Γ)×X(ΩΣ,Γ)→ C and a constant β > 0 such that

Re{aC
(
(V,v),(V,v)

)
+K

(
(V,v),(V,v)

)
} ≥ β (∥V∥2

H1(ΩΣ)
+∥v∥2

H(Γ))

for all (V,v) ∈X(ΩΣ,Γ). As a consequence, the operator induced by aC is of Fredholm type with index
0 (see [17, Theorem 2.33]), i.e. it is bijective if and only if it is injective.

The classical Costabel coupling may be affected by the spurious resonances phenomenon, that is,
the formulation fails to possess a unique solution for the wavenumbers κ0 whose square is an interior
Dirichlet eigenvalue of −∆ on ΩΣ, i.e. for κ0 belonging to

S(∆,ΩΣ) := {κ ∈ C | ∃W ∈ H1
0(ΩΣ)\{0} such that −∆W = κ

2W in ΩΣ } .

Example 6.1 (Spurious resonances). Let κ0 ∈S(∆,ΩΣ) and W ∈ H1(ΩΣ)\{0} such that −∆W = κ2
0W

in ΩΣ and W = 0 on Σ. In particular γΣ
D (W )= γ0

D,c(W )= 0. Then, setting U = 0 and u= γ0
c (W ), we have

(U,u) ∈ X(ΩΣ,Γ). Moreover, by the “exterior” representation formula (4.5) we have G0
κ0
(γ0

c (W )) = 0
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 15

in Ω0, and together with (4.10) we obtain A0
κ0
(γ0

c (W )) = 0− γ0
c (W )/2. Therefore, by the polarity

property (5.6) and identity (3.6)

aΣ(U,V )+ [A0
κ0
(u),θ(v)]Γ +[T(u),T(v)]Σ/2

= 0+[A0
κ0
(γ0

c (W )),θ(v)]Γ − [γ0
c (W ),v]Γ/2

=−[γ0
c (W ),θ(v)]Γ/2− [γ0

c (W ),v]Γ/2 =−⟨γ0
D,c(W ),q⟩Γ = 0

for all (V,v) ∈ X(ΩΣ,Γ), with v = (v,q). This indicates that (U,u) is a non-trivial solution to (6.7)
with homogeneous right-hand side FΣ ≡ 0, Uinc = 0.

It turns out that κ0 ∈S(∆,ΩΣ) is also a necessary condition for the presence of spurious resonances.
To prove this, we need the following equivalence result between the Costabel coupling formulation
(6.7) and the transmission problem (2.4) with n = 0.

Proposition 6.2 (Equivalence). If Ũ ∈ H1
loc(Rd) solves (2.4) with n = 0, then the pair (U,u) =

(Ũ |ΩΣ
,γ0(Ũ)) solves (6.7). Reciprocally, if (U,u) ∈ X(ΩΣ,Γ) solves (6.7), then the solution to (2.4)

with n = 0 is given by

(6.8)
Ũ(xxx) :=U(xxx) for xxx ∈ ΩΣ,

Ũ(xxx) := (G0
κ0
(u)+Uinc)(xxx) for xxx ∈ Ω0.

Proof. The first implication stems from the derivation of (6.7), so we only need to examine the other
implication. First of all, (Ũ −Uinc)|Ω0 = G0

κ0
(u) is κ0-outgoing radiating in Ω0, see e.g. [11, Theorem

3.2]. Second, Ũ satisfies the Helmholtz equation in Ω0 since it is satisfied by Uinc by definition and
also by the potentials, see e.g. [11, §2.4]. If we take (V,0) ∈ H1

0(ΩΣ)×{0} ⊂X(ΩΣ,Γ) as test function
in (6.7), we obtain aΣ(U,V ) = aΣ(Ũ ,V ) = FΣ(V ), so Ũ satisfies Helmholtz equation also in ΩΣ, and
there only remains to prove that Ũ complies with the transmission conditions of (2.4) through Γ ≡ Σ.

Now, considering a generic (V,v) ∈ X(ΩΣ,Γ) where V ∈ H1(ΩΣ) (not necessarily V ∈ H1
0(ΩΣ)),

and integrating by parts, we obtain

(6.9) aΣ(Ũ ,V )−⟨γΣ
NŨ ,γΣ

DV ⟩
Γ
= FΣ(V ) ∀V ∈ H1(ΩΣ).

By (6.8) and (4.10), we have

(6.10) γ
0(Ũ) = A0

κ0
(u)+u/2+ γ

0(Uinc).

Then, plugging (6.9) and (6.10) into (6.7) leads to

⟨γΣ
NŨ ,γΣ

DV ⟩
Γ
+[A0

κ0
(u),θ(v)]Γ +[T(u),T(v)]Σ/2 =−[γ0(Uinc),θ(v)]Γ

⟨γΣ
NŨ ,γΣ

DV ⟩
Γ
+[γ0(Ũ)−u/2,θ(v)]Γ +[T(u),T(v)]Σ/2 = 0

that is, by the polarity property (5.6) and identity (3.6) writing u= (u, p), v= (v,q),

⟨γΣ
NŨ ,γΣ

DV ⟩
Γ
+[γ0(Ũ),θ(v)]Γ = [u,θ(v)]Γ/2+[u,v]Γ/2

⟨γΣ
NŨ ,γΣ

DV ⟩
Γ
−⟨u,q⟩Γ − [θ ◦ γ

0(Ũ),v]Γ = 0.

Since (U,u) ∈ X(ΩΣ,Γ) we have u = TD(u) = γΣ
D (U) = γΣ

D (Ũ). Similarly, for the test pair we have
(V,v)∈X(ΩΣ,Γ), hence γΣ

D (V )=TD(v)= v. As a consequence, ⟨γΣ
NŨ ,γΣ

DV ⟩
Γ
−⟨u,q⟩Γ =−[γΣ(Ũ),v]Γ
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 16

and, finally, we obtain [γΣ(Ũ)+θ ◦γ0(Ũ),v]Γ = 0 for all v=(v,q)∈H1/2(Γ)×H−1/2(Γ). This implies
that γΣ(Ũ) =−θ ◦ γ0(Ũ), which also rewrites γ0

D(Ũ) = γΣ
D (Ũ) and γ0

N(Ũ) =−γΣ
N (Ũ). □

Corollary 6.3 (Injectivity condition). Let (U,u) ∈ X(ΩΣ,Γ), solve (6.7) with FΣ ≡ 0 and Uinc = 0.
Then U = 0. If κ0 /∈S(∆,ΩΣ) we also have u= 0 necessarily.

Proof. By the equivalence Proposition 6.2, Ũ ∈ H1
loc(Rd) defined by (6.8) satisfies the transmission

problem (2.4) with n = 0, which is well posed, so Ũ = 0. Since Ũ |ΩΣ
=U , we get U = 0. Denoting

u= (u, p), we then have u = TD(u) = γΣ
D (U) = 0 because (U,u) ∈X(ΩΣ,Γ). Moreover, since Ũ |Ω0 =

G0
κ0
(u), we obtain G0

κ0
(u)(xxx) = 0, that is SL0

κ0
(p)(xxx) = 0 for xxx ∈ Ω0. Therefore γ0

DSL
0
κ0
(p) = 0, which

implies p = 0 given κ0 /∈S(∆,ΩΣ) (see [22, Theorem 3.9.1]). □

We refer to [14] for a combined field integral equation FEM-BEM formulation immune to spurious
resonances.

7. Single-trace FEM-BEM formulation

In this section we shall revisit the analysis presented in the previous section, this time considering
multi-domain configurations (n ≥ 1, with potential cross-points) instead of a simple two-domain setting.
This will lead to a first coupling variational formulation for the transmission problem (2.4) in the
targeted multi-domain configuration. We combine a volume variational formulation in ΩΣ with the
boundary integral formulation on Γ called Single-Trace Formulation (STF), first analyzed in [23].
The Costabel coupling lends itself well to match the STF since it is based on the full set of Calderón
identities, from which the STF arises. In [8, §4] the STF was revisited and adapted to the case with an
impenetrable part represented by the subdomain ΩΣ. The present analysis, where ΩΣ is a heterogeneous
part, bears several similarities to the analysis in [8].

As in the previous section, let us start with a function U that is a unique solution to the transmission
problem (2.4). We are going to reformulate this transmission problem in terms of the pair

(7.1)
(U |ΩΣ

,u) ∈ X(ΩΣ,Γ)

where u= γ(U) = (γ0(U), . . . ,γn(U)).

Here, except for the Neumann condition through Σ that writes γΣ
N (U) = TN(u), the transmission

conditions shall be enforced strongly by the choice of X(ΩΣ,Γ) as variational space. As in Section 6,
pick an arbitrary test pair (V,v) ∈ X(ΩΣ,Γ), and apply Green’s formula in ΩΣ. Again, we obtain the
following classical variational identity:

(7.2)

aΣ(U,V )−⟨γΣ
N (U),γΣ

D (V )⟩Σ = FΣ(V )

where aΣ(U,V ) :=
∫

ΩΣ
(∇U ·∇V −κ2

Σ
(xxx)UV )dxxx

FΣ(V ) :=
∫

ΩΣ
fV dxxx.

Next, we rewrite the boundary term as in (6.4), except that, before applying the polarity property (5.6)
to the term −[T(u),θ(T(v))]Σ, we need to introduce a multi-domain analogue of the operator θ :
Θ(v) := (θ(v0), . . . ,θ(vn)) for v = (v0, . . . ,vn) ∈ H(Γ). Noting that θ(T(v)) = T(Θ(v)), we can
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 17

write:

(7.3)

−⟨γΣ
N (U),γΣ

D (V )⟩Σ =−⟨TN(u),TD(v)⟩Σ

=−[T(u),θ(T(v))]Σ/2+[T(u),T(v)]Σ/2

=+[u,Θ(v)]Γ/2+[T(u),T(v)]Σ/2.

Plugging (7.3) into (7.2) we obtain

(7.4) aΣ(U,V )+ [u,Θ(v)]Γ/2+[T(u),T(v)]Σ/2 = FΣ(V ).

Following for Ω0 the same argumentation as in Section 6, we have γ0G0
κ0
(γ0(Uinc))= γ0G0

κ0
(γ0

c (Uinc))=

0, and γ0(U −Uinc) = γ0G0
κ0
(γ0(U −Uinc)) = γ0G0

κ0
γ0(U). Hence γ0(U) = γ0G0

κ0
γ0(U)+ γ0(Uinc),

which by (4.10) also rewrites γ0(U)/2 = A0
κ0

γ0(U) + γ0(Uinc). Moreover, since U verifies the
Helmholtz equation with constant wavenumber κ j in Ω j, j = 1, . . . ,n, the representation formula
(4.4) yields γ j(U) = γ jG

j
κ j(γ

j(U)), that is, by (4.10), γ j(U)/2 = A
j
κ j γ

j(U). With the notation
u= γ(U) = (γ0(U), . . . ,γn(U)), we have obtained

(7.5)

u/2 = A(u)+uinc

where A := diag(A0
κ0
, . . . ,An

κn)

where uinc := (γ0(Uinc),0, . . . ,0).

We draw the attention of the reader to the strong analogy between (7.5) and (6.6), the essential
difference being that we are now dealing with multiple subdomains, i.e. Ω0, . . . ,Ωn instead of only
Ω0. Now, plugging (7.5) into the second term in the left-hand side of (7.4) leads to the single-trace
FEM-BEM formulation:

(7.6)

Find (U,u) ∈ X(ΩΣ,Γ) such that

aΣ(U,V )+ [A(u),Θ(v)]Γ +[T(u),T(v)]Σ/2

= FΣ(V )− [uinc,Θ(v)]Γ ∀(V,v) ∈ X(ΩΣ,Γ).

Noticing the strong the similarities between (7.6) and (6.7), we have just derived a generalization of
the Costabel coupling (6.7) to multi-domain settings. The expanded expression for (7.6) reads:

Find (U,u) ∈ X(ΩΣ,Γ) such that∫
ΩΣ

(∇U ·∇V −κ
2
Σ(xxx)UV )dxxx+

n

∑
j=0

[A j
κ j(u j),θ(v j)]Γ j +[T(u),T(v)]Σ/2

=
∫

ΩΣ

fV dxxx − [γ0(Uinc),θ(v0)]Γ0 ∀(V,v) ∈ X(ΩΣ,Γ).

Note that in this first multi-domain formulation the transmission conditions are imposed in strong form
inside the function space X(ΩΣ,Γ). Starting from (7.6), a more flexible formulation will be designed
in Section 9.

The link between the single-trace FEM-BEM formulation (7.6) and the transmission problem (2.4)
is examined in the following proposition.
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 18

Proposition 7.1 (Equivalence). If Ũ ∈ H1
loc(Rd) solves (2.4), then the pair (U,u) = (Ũ |ΩΣ

,γ(Ũ))
solves (7.6). If (U,u) ∈ X(ΩΣ,Γ) solves (7.6), then the solution to (2.4) is given by

Ũ(xxx) :=U(xxx) for xxx ∈ ΩΣ,

Ũ(xxx) := G
j
κ j(u j)(xxx)+Uinc(xxx)1Ω0(xxx) for xxx ∈ Ω j, j = 0, . . . ,n.

(7.7)

Proof. We will follow closely the proof of Proposition 6.2 established for the case n = 0, except that
we now have multiple subdomains Ω j. By similar arguments as in the beginning of that proof, it
remains only to show that Ũ given by (7.7) complies with the transmission conditions of (2.4). For
that we will use their characterization given by Lemma 5.3.

Considering an arbitrary test pair (V,v) ∈ X(ΩΣ,Γ), and applying Green’s formula in ΩΣ leads to

(7.8) aΣ(U,V )−⟨γΣ
NŨ ,γΣ

DV ⟩
Σ
= FΣ(V ) ∀V ∈ H1(ΩΣ).

On the other hand, by applying the trace operator γ j on the second line of (7.7) and using (4.10), we
get γ0(Ũ) = A0

κ0
(u0)+u0/2+ γ0(Uinc) and γ j(Ũ) = A

j
κ j(u j)+u j/2 for j = 1 . . .n, that is, in compact

notation, γ(Ũ) = A(u)+u/2+uinc. Now we plug this and (7.8) into (7.6), so we obtain

(7.9)
⟨γΣ

NŨ ,γΣ
DV ⟩

Σ
+[γ(Ũ),Θ(v)]Γ − [u,Θ(v)]Γ/2+[T(u),T(v)]Σ/2 = 0

for all (V,v) ∈ X(ΩΣ,Γ).

By the polarity identity (5.6) and (3.6) we can write

−[u,Θ(v)]Γ/2+[T(u),T(v)]Σ/2 = [T(u),T(Θ(v))]Σ/2+[T(u),T(v)]Σ/2

= ⟨TD(u),TN(v)⟩Σ
,

so (7.9) becomes

⟨γΣ
NŨ ,γΣ

DV ⟩
Σ
+ ⟨TD(u),TN(v)⟩Σ

+[γ(Ũ),Θ(v)]Γ = 0 for all (V,v) ∈ X(ΩΣ,Γ).

Moreover, since (U,u)∈X(ΩΣ,Γ) and Ũ |ΩΣ
=U , we have TD(u) = γΣ

D (U) = γΣ
D (Ũ), and also γΣ

D (V ) =
TD(v) because (V,v) ∈ X(ΩΣ,Γ). Therefore, by (3.4) and θ ◦T= T◦Θ, we conclude that

[γΣ(Ũ),T(Θ(v))]Σ +[γ(Ũ),Θ(v)]Γ = 0 for all v ∈ X(Γ).

Thanks to the variational characterization (5.8), since Θ is an automorphism, we conclude that Ũ
satisfies the transmission conditions of Problem (2.4). □

The bilinear form aΣ(·, ·) satisfies a Gårding inequality, as well as [A(·),Θ(·)]Γ, see [23, §4.1] and
[8, Proposition 4.2]. In addition we have Re{[T(v),T(v)]Σ}= 0. From these remarks we conclude that
aSTF : X(ΩΣ,Γ)×X(ΩΣ,Γ)→ C defined as the bilinear form on the left-hand side of (7.6) satisfies a
Gårding inequality.

Proposition 7.2 (Gårding inequality). There exist a compact bilinear form K :X(ΩΣ,Γ)×X(ΩΣ,Γ)→
C and a constant β > 0 such that

Re
{
aSTF

(
(V,v),(V ,v)

)
+K

(
(V,v),(V ,v)

)}
≥ β (∥V∥2

H1(ΩΣ)
+∥v∥2

H(Γ))

for all (V,v) ∈ X(ΩΣ,Γ).
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 19

As a consequence, the operator induced by aSTF is of Fredholm type with index 0 (see [17, Theorem
2.33]), that is, formulation (7.6) has a unique solution for all f ∈ L2(ΩΣ), Uinc ∈ H1

loc(Rd) if and
only if for FΣ ≡ 0, uinc = 0 it only has the trivial solution. Other important consequences of the
Gårding inequality are, again in the case of injectivity (see [22, Theorems 4.2.9, 4.2.8]): stability of
the variational formulation (7.6) in the sense of an inf-sup condition; and, for Galerkin equations
discretizing (7.6), the validity of a discrete inf-sup condition, which implies well-posedness for the
Galerkin equations and a quasi-optimal convergence of the Galerkin solutions to the exact solution.

7.1. Spurious resonances. Unfortunately, like the classical Costabel coupling, the single-trace FEM-
BEM formulation (7.6) may be affected by the spurious resonances phenomenon, that is, the associated
operator may be not injective, whereas the transmission problem (2.4) is always well-posed. Here we
examine in which situations the spurious resonances phenomenon occurs. The following proposition
identifies the injectivity condition, which depends on the wavenumbers and on the geometric config-
uration. This condition turns out to be the same as in [8, Theorem 4.8], which dealt with a partially
impenetrable composite medium.

Proposition 7.3 (Injectivity condition). Let (U,u) ∈ X(ΩΣ,Γ) solve formulation (7.6) with FΣ ≡ 0,
uinc = 0. Then U = 0. We also have u= 0 if the following additional condition is satisfied:

(7.10) Σ ̸⊂ Γ j or κ j /∈S(∆,ΩΣ) for all j = 0, . . . ,n.

In the case where Condition (7.10) does not hold, there exists u∈X(Γ)\{0} such that (0,u)∈X(ΩΣ,Γ)
solves (7.6) with FΣ ≡ 0, uinc = 0.

Proof. By the equivalence Proposition 7.1, the function Ũ defined in (7.7) solves the homogeneous
transmission problem (2.4), which is well-posed, so Ũ = 0. In particular, U = Ũ |ΩΣ

= 0, and TD(u) =

γΣ
DU = 0. Employing test functions (V,v) ∈X(ΩΣ,Γ) with γΣ

DV = TD(v) = 0 in formulation (7.6) with
FΣ ≡ 0, uinc = 0, we obtain that u satisfies

[A(u),Θ(v)] = 0, ∀v ∈ X(Γ) with TD(v) = 0,

i.e. u ∈ X(Γ) satisfies TD(u) = 0 and [A(u),v] = 0,∀v ∈ X(Γ) with TD(v) = 0, which is exactly the
setting of [8, Lemma 4.5, Lemma 4.6]. As a consequence also [8, Corollary 4.7] holds true: if Σ ̸⊂ Γ j
for all j = 0, . . . ,n, then for any choice of κ j > 0 we have u = 0. We also obtain that, if Σ ⊂ Γ j for
a j ∈ {0, . . . ,n}, then κ j /∈S(∆,ΩΣ) implies u= 0, thanks to the reasoning in the third bullet in the
proof of [8, Theorem 4.8], which relies on [8, Lemma 4.5, Lemma 4.6].

Next, assuming that Condition (7.10) does not hold i.e. Σ ⊂ Γi and κi ∈ S(∆,ΩΣ) for a certain
i ∈ {0, . . . ,n}, we construct u ̸= 0 such that (0,u) solves (7.6) with FΣ ≡ 0, uinc = 0. Since Σ ⊂ Γi,
by the geometric considerations in the first bullet in the proof of [8, Theorem 4.8], we get that ΩΣ is
exactly one bounded connected component of Rd\Ωi, and in particular ΩΣ is completely separated
from the other subdomains Ω j, j ̸= i:

(7.11) ΩΣ ∩
n⋃

j=0, j ̸=i

Ω j = /0.

Since κi ∈S(∆,ΩΣ), there exists W ∈ H1(ΩΣ)\{0} such that −∆W −κ2
i W = 0 in ΩΣ and W = 0 on

Σ. We consider U∗ = 0 ∈ H1(ΩΣ), ui = 0 ∈ H1/2(Γi), and pi ∈ H−1/2(Γi) with pi = 0 on Γi\Σ and
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ΩΣ Ω1 Ω0

FIGURE 3. Situation without spurious resonances.

pi =−γΣ
NW on Σ. We set u∗i = (ui, pi) and u∗j = (0,0) for j ̸= i, j = 0, . . . ,n, thus by construction and

(7.11), we have u∗ ∈ X(Γ) and TD(u
∗) = ui = 0 = γΣ

DU∗, that is (U∗,u∗) ∈ X(ΩΣ,Γ). If we evaluate
the left-hand side of formulation (7.6) in (U∗,u∗) we get: given any (V,v) ∈ X(ΩΣ,Γ)[

Ai
κi
(u∗i ),θ(vi)

]
Γi
− 1

2
⟨TN(u

∗),TD(v)⟩Σ
=[

γ
iGi

κi
(u∗i ),θ(vi)

]
Γi
− 1

2
[u∗i ,θ(vi)]Γi

− 1
2
⟨TN(u

∗),TD(v)⟩Σ
=[

γ
iSLi

κi
(pi),θ(vi)

]
Γi
− 1

2
⟨pi,vi⟩Γi

+
1
2
⟨pi,vi⟩Σ

,

where we have used (4.10), and (7.11) to write TD(v) = vi, TN(u
∗) = −pi. Now, the last two terms

cancel each other out since by construction pi = 0 on Γi\Σ. For the same reason in the first term
SLi

κi
(pi) = SLΣ

κi
(pi). Moreover, by the representation formula (4.4) on ΩΣ, for xxx ∈ Rd\ΩΣ we have

0 = GΣ
κi
(γΣW )(xxx) = SLΣ

κi
(γΣ

NW )(xxx) =−SLΣ
κi
(pi)(xxx),

therefore γ iSLi
κi
(pi) = 0 and (U∗,u∗) is a non-trivial solution to formulation (7.6). □

Note that Corollary 6.3 for the classical Costabel coupling is a particular case of the previous
proposition, where Σ ⊂ Γ0 (actually Σ = Γ0). In the multi-domain configuration, surprising situations
can arise, as shown in the next example.

Example 7.4. Consider the transmission problem (2.4) with n = 1, i.e. Rd = Ω0 ∪Ω1 ∪ΩΣ, but
suppose that κ0 = κ1 so that the interface Γ0∩Γ1 is “artificial”. In fact, the material configuration is the
same as in the classical Costabel coupling, which is affected by spurious resonances if κ0 ∈S(∆,ΩΣ).
On the contrary, if we assume that the (d −1)-dimensional Hausdorff measure of Σ∩Γ0 and Σ∩Γ1 is
strictly positive as in Figure 3, so that Σ ̸⊂ Γ1 and Σ ̸⊂ Γ0, then, no matter which is the value of κ0, the
corresponding single-trace FEM-BEM formulation (7.6) does not have spurious resonances!

8. Single-trace combined field FEM-BEM formulation

We have shown that the single-trace FEM-BEM formulation (7.6) is affected by spurious resonances
when Σ ⊂ Γi and κi ∈S(∆,ΩΣ) for a certain i ∈ {0, . . . ,n}. As a remedy, we modify the boundary
integral formulation on Γ by adapting the approach of Combined Field Integral Equations (CFIE),
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 21

first introduced in [5] for direct integral equations. The basic idea behind the CFIE approach is that
Helmholtz boundary value problems with Robin (also called impedance) boundary conditions are
always uniquely solvable, in contrast to interior pure Dirichlet (or pure Neumann) problems. The
classical CFIEs thus rely on complex combinations of Dirichlet and Neumann traces, but neglecting
the fact that they belong to different function spaces. Here, we adopt regularized CFIEs (see e.g. [4]),
in which suitable compact operators map between Dirichlet and Neumann traces.

For the transmission problem (2.4) with n = 0, a variational formulation based on regularized CFIEs
and the Costabel coupling was proposed in [14]. Here, to extend to the multi-domain case this coupling
formulation immune to spurious resonances, we adopt a procedure inspired by [8, §5] (where ΩΣ

represented an impenetrable part of the medium).

8.1. Regularizing operator and trace transformation operator. The main step to obtain a combined
field formulation that fixes (7.6) is to pick test functions satisfying generalized Robin conditions on Σ.
These conditions are based on a linear regularizing operator M : H−1/2(Σ)→ H+1/2(Σ) that satisfies

M is compact,(8.1a)

Im{⟨Mϕ,ϕ⟩
Σ
}> 0 ∀ϕ ∈ H−1/2(Σ)\{0}.(8.1b)

For instance, if M̃ is any second order strongly coercive real symmetric surface differential operator on
Σ, then M= ıM̃ matches the two conditions above.

Example 8.1. A concrete choice for such an operator was proposed in [4, §4]: M = ı(−∆Σ +
IdΣ)

−1 : H−1(Σ)→ H1(Σ), where ∆Σ denotes the Laplace-Beltrami operator on Σ. In this case, com-
pactness of M : H−1/2(Σ) → H1/2(Σ) follows from the continuity of M : H−1(Σ) → H1(Σ) and the
compact embeddings H−1/2(Σ) ⊂ H−1(Σ) and H1(Σ) ⊂ H1/2(Σ). Note that to avoid evaluations of
M in the resulting combined field formulation (8.7), one can reformulate (8.7) as a mixed variational
formulation with auxiliary variables like in [8, §5.4].

Invoking the duality of the spaces H1/2(Σ) and H−1/2(Σ), we can also define the adjoint regularizing
operator M∗ : H−1/2(Σ)→ H+1/2(Σ) by

⟨M∗p,q⟩
Σ

:= ⟨Mq, p⟩
Σ

for all p,q ∈ H−1/2(Σ).

Note that M∗ satisfies properties (8.1a)-(8.1b) if and only if M does. Now, given a regularizing operator
M, we define the subspace of H1(ΩΣ)×X(Γ) satisfying generalized Robin conditions on Σ:

(8.2) XM(ΩΣ,Γ) := {(V,v) ∈ H1(ΩΣ)×X(Γ) | TD(v) =MTN(v)+ γ
Σ
D (V )} .

Please note the relationship between the space above and X(ΩΣ,Γ) defined in (5.10), whose elements
satisfy instead Dirichlet conditions on Σ. In fact, as shown in the lemma below, the space XM(ΩΣ,Γ) can
be obtained as the image of the space X(ΩΣ,Γ) through a trace transformation operator. Its definition
involves the regularizing operator M, and a bounded extension operator EΣ : H1/2(Σ)→ H1(Rd) that
provides a right inverse of the trace operator γΣ

D (see e.g. [17, Lemma 3.36]). Then, we define the trace
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transformation operator

(8.3)

R : H1(ΩΣ)×X(Γ)→ H1(ΩΣ)×X(Γ)
R(V,v) := (V,v+C(v))

with C(v) := (γ j
D ◦EΣ ◦M◦TN(v), 0)n

j=0,

where C : X(Γ)→ X(Γ) inherits compactness from M. Since C2 = 0, we have R−1(V,v) = (V,v−
C(v)), and R is an isomorphism. We can prove the following lemma, which is a variant of [8, Lemma
5.2].

Lemma 8.2 (Trace transformation). R(X(ΩΣ,Γ)) = XM(ΩΣ,Γ).

Proof. Recalling the definitions of T in (5.5), of γ in (5.2), and of EΣ above, we have that the operator
TD ◦ γ ◦EΣ is the identity on H1/2(Σ), hence TDC = MTN. Note also that TNC = 0. Therefore, if
(V,v) ∈X(ΩΣ,Γ) we have TD(v+C(v)) = γΣ

D (V )+MTN(v) = γΣ
D (V )+MTN(v+C(v)), which shows

that R(X(ΩΣ,Γ))⊂XM(ΩΣ,Γ). Now let (V,v)∈XM(ΩΣ,Γ), then TD(v−C(v)) =MTN(v)+γΣ
D (V )−

MTN(v) = γΣ
D (V ). Hence R−1(XM(ΩΣ,Γ))⊂ X(ΩΣ,Γ). □

8.2. The formulation. In order to obtain the new combined field formulation, we proceed in a manner
similar to Section 7, this time choosing test pairs (V ′,v′) in XM(ΩΣ,Γ) instead of X(ΩΣ,Γ). Again
the transmission problem (2.4) with solution U ∈ H1

loc(Rd) will be reformulated as a coupled problem
with solution

(8.4)
(U |ΩΣ

,u) ∈ X(ΩΣ,Γ)

where u= γ(U) = (γ0(U), . . . ,γn(U)).

For (V ′,v′) ∈ XM(ΩΣ,Γ), applying Green’s formula in ΩΣ leads to aΣ(U,V ′)−⟨γΣ
N (U),γΣ

D (V
′)⟩Σ =

FΣ(V ′), as in Section 7. Next, we transform the boundary term following steps similar to (7.3), but
with an extra term since here γΣ

D (V
′) = TD(v

′)−MTN(v
′):

−⟨γΣ
N (U),γΣ

D (V
′)⟩Σ =−⟨TN(u),TD(v

′)⟩Σ + ⟨TN(u),MTN(v
′)⟩Σ

= [u,Θ(v′)]Γ/2+[T(u),T(v′)]Σ/2+ ⟨TN(u),MTN(v
′)⟩Σ,

that is, by the boundary integral representations in the subdomains Ω0, . . . ,Ωn summarized by (7.5),

(8.5)
−⟨γΣ

N (U),γΣ
D (V

′)⟩Σ

= [A(u),Θ(v′)]Γ +[uinc,Θ(v′)]Γ +[T(u),T(v′)]Σ/2+ ⟨TN(u),MTN(v
′)⟩Σ.

Now, according to the parametrization of XM(ΩΣ,Γ) in Lemma 8.2, we have (V ′,v′) = R(V,v) =
(V,(Id+C)v) for (V,v) ∈ X(ΩΣ,Γ), and this representation can be injected into (8.5):

−⟨γΣ
N (U),γΣ

D (V )⟩Σ = [A(u),Θ(v)]Γ +[A(u),ΘC(v)]Γ +[uinc,Θ(Id+C)v)]Γ

+[T(u),T(v)]Σ/2+[T(u),TC(v)]Σ/2+ ⟨TN(u),TDC(v)⟩Σ,

where for the last term we have used MTN = TDC and TNC= 0. Moreover, by (3.5) and (5.6) we can
rewrite the sum of the last two terms in the equation above as

[T(u),TC(v)]Σ/2+ ⟨TN(u),TDC(v)⟩Σ = [T(u),θTC(v)]Σ/2 =−[u,ΘC(v)]Γ/2.
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In conclusion, summing up and defining the source term ũinc ∈H(Γ) and the bilinear form c : X(Γ)×
X(Γ)→ C

(8.6)
[ũinc,v]Γ := [uinc,Θ(Id+C)v]Γ,

c(w,v) := [(A− Id/2)w,ΘCv]Γ,

we obtain the formulation

(8.7)

Find (U,u) ∈ X(ΩΣ,Γ) such that

aΣ(U,V )+ [A(u),Θ(v)]Γ + c(u,v)+ [T(u),T(v)]
Σ
/2

= FΣ(V )− [ũinc,v]Γ ∀(V,v) ∈ X(ΩΣ,Γ),

which we dub single-trace combined field FEM-BEM formulation because the test pairs that we have
considered for its derivation comply with an impedance condition on Σ, see (8.2).

Formulation (8.7) differs from (7.6) by terms involving the operator C only, which is compact.
Hence, a Gårding inequality analogue to Proposition 7.2 also holds for (8.7). The additional benefit
of using (8.2) is to eliminate the spurious resonance phenomenon and to yield systematic unique
solvability. To prove this, we start by establishing an intermediate lemma.

Lemma 8.3. Let (U,u) ∈ X(ΩΣ,Γ) solve formulation (8.7) with FΣ ≡ 0, ũinc = 0. Then we have

(8.8) ⟨γΣ
N (U)−TN(u),γ

Σ
D (V )⟩Σ +[(A− Id/2)u,Θ(v)]Γ = 0 ∀(V,v) ∈ XM(ΩΣ,Γ).

Proof. The proof essentially consists in rewinding the derivation of (8.7) in reverse order. First of
all, observe that for V ∈ H1

0(ΩΣ) we have (V,0) ∈ X(ΩΣ,Γ). With this choice of test pairs we obtain
aΣ(U,V ) = 0 for all V ∈ H1

0(ΩΣ), which leads to ∆U +κ2
Σ
U = 0 in ΩΣ. As a consequence we have

aΣ(U,V ) = ⟨γΣ
N (U),γΣ

D (V )⟩Σ for any V ∈ H1(ΩΣ). Coming back to (8.7) with homogeneous right-hand
side, we obtain

0 = ⟨γΣ
N (U),γΣ

D (V )⟩Σ +[A(u),Θ(v)]Γ + c(u,v)+ [T(u),T(v)]
Σ
/2 ∀(V,v) ∈ X(ΩΣ,Γ).

Next plugging the definition of c provided by (8.6) into the expression above, for a given (V,v) ∈
X(ΩΣ,Γ) we obtain

(8.9) 0 = ⟨γΣ
N (U),γΣ

D (V )⟩Σ +[(A− Id/2)u,Θ(Id+C)v]Γ +[u,Θ(v)]
Γ
/2+[T(u),T(v)]

Σ
/2.

Next, since u,v∈X(Γ), we have [u,Θ(v)]
Γ
=− [T(u),θT(v)]

Σ
. By (3.5), we conclude that [u,Θ(v)]

Γ
+

[T(u),T(v)]
Σ
= −2⟨TN(u),TD(v)⟩Σ. In addition, we have TD(v) = γΣ

D (V ) since (V,v) ∈ X(ΩΣ,Γ).
Plugging this into (8.9) leads to the identity

0 = ⟨γΣ
N (U)−TN(u),γ

Σ
D (V )⟩Σ +[(A− Id/2)u,Θ(Id+C)v]Γ ∀(V,v) ∈ X(ΩΣ,Γ).

To finish the proof there only remains to apply Lemma 8.2 □

Proposition 8.4 (Injectivity). Let (U,u) ∈ X(ΩΣ,Γ) solve formulation (8.7) with FΣ ≡ 0, ũinc = 0.
Then U = 0, u= 0.
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 24

Proof. Consider the space XM(Γ) := {v ∈ X(Γ) | TD(v) =MTN(v)} and observe that we have (0,v)∈
XM(ΩΣ,Γ) for any v ∈ XM(Γ). As a consequence we can apply Lemma 8.3 above choosing (V,v) =
(0,v) with v ∈ XM(Γ), so we obtain that

[(A− Id/2)u,Θ(v)]Γ = 0 ∀v ∈ XM(Γ).

Let us denote w := (A− Id/2)u. Considering any v ∈ X(Γ) such that T(v) = 0, we have Θ(v) ∈ X(Γ)
with T(Θ(v)) = 0 so that Θ(v)∈XM(Γ) and [w,v]Γ = [(A− Id/2)u,Θ◦Θ(v)]Γ = 0. Applying Lemma
5.2, we conclude that w ∈ X(Γ). So, by (5.6), [T(w),θT(v)]Σ = 0 ∀v ∈ XM(Γ), that is ⟨TD(w)+
M∗TN(w),TN(v)⟩Σ = 0 ∀v ∈ XM(Γ), which implies TD(w) =−M∗TN(w), as TN is surjective. From
this and by (8.1b) we conclude that

0 ≤ 2Im{⟨M∗TN(w),TN(w)⟩Σ}
=−2Im{⟨TD(w),TN(w)⟩Σ}
=− Im{[T(w),T(w)]Σ}= Im{[w,w]Γ}.

Moreover, by construction, since A2 = Id/4, we have (A+ Id/2)w= (A+ Id/2)(A− Id/2)u= 0, so
we can write [w,w]Γ/2 =−[A(w),w]Γ. Therefore, we deduce that 0 ≤ Im{⟨M∗TN(w),TN(w)⟩Σ}=
− Im[A(w),w]Γ ≤ 0 by applying Proposition 4.4 for the last inequality. Hence Im{⟨M∗TN(w),TN(w)⟩Σ =
0. Next (8.1b) yields TN(w) = 0 and, since TD(w) =−M∗TN(w), we finally obtain T(w) = 0. This
implies that [w,Θ(v)]Γ =−[T(w),θT(v)]Σ = 0 ∀v ∈ X(Γ), which rewrites

[(A− Id/2)u,v]Γ = 0 ∀v ∈ X(Γ).

Therefore, the second term in (8.8) vanishes for all (V,v)∈XM(ΩΣ,Γ), and by Lemma 8.3 we conclude
that γΣ

N (U) = TN(u), which implies γΣ(U) = T(u) since (U,u) ∈ X(ΩΣ,Γ) by assumption. On the
other hand we have

0 = [(A− Id/2)u,v]Γ = [(A+ Id/2)u,v]Γ − [u,v]Γ

= [(A+ Id/2)u,v]Γ +[T(u),T(v)]Σ = [(A+ Id/2)u,v]Γ
for all v ∈ X(Γ) such that T(v) = 0.

From this last equality, applying Lemma 5.2, we obtain that (A+ Id/2)u ∈ X(Γ). Moreover, since we
established that T(u) = γΣ(U) and T(w) = T((A− Id/2)u) = 0, we obtain

T((A+ Id/2)u) = T(w)+T(u) = γ
Σ(U).

Finally, let us define Ũ ∈ L2
loc(Rd) by Ũ(xxx) =U(xxx) for xxx ∈ ΩΣ, and Ũ(xxx) = G

j
κ j(u j)(xxx) for xxx ∈ Ω j, j =

0, . . . ,n. By construction we have

∆Ũ +κ
2
ΣŨ = 0 in ΩΣ

∆Ũ +κ
2
j Ũ = 0 in Ω j ∀ j = 0 . . .n

Ũ is κ0-outgoing radiating.

Let us prove that Ũ satisfies the Neumann and Dirichlet transmission conditions through the skeleton
of the subdomain partition. Using (4.10), we have established that γ(Ũ) = (γ jG

j
κ j(u j)) j=0...n =
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ΩΣ

Ω1 Ω2

Ω0

ΩΣ

Ω1 Ω2

Ω0

⇒

FIGURE 4. Illustration of the gap idea (the gap is highlighted in orange).

(A+ Id/2)u ∈ X(Γ) on the one hand, and

T(γ(Ũ)) = T((A+ Id/2)u) = γ
Σ(U) = γ

Σ(Ũ).

Hence, by Lemma 5.3 we see that Ũ is solution to the transmission problem (2.4) with zero right-
hand side. Since this boundary value problem admits a unique solution Ũ ≡ 0, we get U = 0,
T(u) = γΣ(U) = 0 and (A+ Id/2)u= 0, which implies in particular

u ∈ X(Γ) with T(u) = 0

and [A(u),v]Γ = 0 ∀v ∈ X(Γ).

According to [23, Thm. 4.1] or [7, Prop. A.1], the homogeneous formulation above has a unique
solution, hence finally u= 0. □

9. Multi-trace FEM-BEM formulation

Single-trace formulations are not very flexible because the spaces X(ΩΣ,Γ) and X(Γ) contain the
transmission conditions in strong form, which constitutes an obstacle to operator preconditioning [9].
Multi-trace formulations are designed to tackle this issue.

As in [7, §5] and [8, §6], the heuristic idea is to act as if the single-trace FEM-BEM formulation (7.6)
were applied to gap configurations with vanishing gap, see Figure 4: the subdomains ΩΣ, Ω j, j =
1, . . . ,n, are torn apart and an (infinitely) thin gap, filled with the same propagation medium as Ω0,
is introduced, so that all bounded subdomains are isolated from each other. Although the geometric
limit process can not be rigorously described, the gap idea is useful to get a first insight about the
properties satisfied by the multi-trace formulation based on those of the single-trace formulation (like
Propositions 9.3 and 9.4).

In the gap setting (Figure 4, right), the boundary of Ω0 can be partitioned as Γ0 = ∪n
j=1Γ j ∪ Σ, and

the sigle-trace space X(ΩΣ,Γ) is isomorphic to the space H1(ΩΣ)× Ĥ(Γ), where the multi-trace space
Ĥ(Γ), introduced in [8, §6.1], is defined as

(9.1) Ĥ(Γ) :=H(Γ1)×·· ·×H(Γn)×H−1/2(Σ).
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The isomorphism is given by the map s : (U,u) 7→ (U,(u1, . . . ,un,TN(u))), whose inverse, in the gap
setting, is the map t : (U,(û1, . . . , ûn, pΣ)) 7→ (U,(ũ0, û1, . . . , ûn)), where

ũ0(xxx) :=

{
φ(û j)(xxx), xxx ∈ Γ j, j = 1, . . . ,n,
φ(γΣ

DU , pΣ)(xxx), xxx ∈ Σ.
with φ(u, p) := (u,−p).

The multi-trace space Ĥ(Γ) differs from the multi-trace space H(Γ) defined in (5.1) since it does not
contain any contribution on Γ0. Instead, it includes Neumann traces on Σ. It will enter the functional
framework for the global multi-trace formulation, also for general geometrical settings, such as in
Figure 4, left. Note that the unknown traces are doubled on each interface that separates two (bounded)
subdomains, hence the attribute multi-trace. We equip the space Ĥ(Γ) with the standard norm of the
Cartesian product:

∥v̂∥2
Ĥ(Γ)

:=
n

∑
j=1

∥v̂ j∥2
H(Γ j)

+∥qΣ∥2
H−1/2(Σ)

, for v̂= (v̂1, . . . , v̂n,qΣ) ∈ Ĥ(Γ).

The dual space of Ĥ(Γ) is the space qH(Γ) := H(Γ1)× ·· · ×H(Γn)×H1/2(Σ), with respect to the
duality pairing

(9.2) Jǔ, v̂K :=
n

∑
j=1

[ǔ j, v̂ j]Γ j + ⟨uΣ,qΣ⟩Σ
,

for ǔ= (ǔ1, . . . , ǔn,uΣ) ∈ qH(Γ), v̂= (v̂1, . . . , v̂n,qΣ) ∈ Ĥ(Γ).
For notational convenience it is useful to introduce also a multi-trace space that includes both

Dirichlet and Neumann traces on Σ, but no components on Γ0:

(9.3) ̂̂H(Γ) :=H(Γ1)×·· ·×H(Γn)×H(Σ),

with the skew-symmetric duality pairing

(9.4) ⦃
ˆ̂u, ˆ̂v⦄ :=

n

∑
j=1

[ ˆ̂u j, ˆ̂v j]Γ j +[ ˆ̂uΣ, ˆ̂vΣ]Σ,

for ˆ̂u= ( ˆ̂u1, . . . , ˆ̂un, ˆ̂uΣ), ˆ̂v= ( ˆ̂v1, . . . , ˆ̂vn, ˆ̂vΣ) ∈ ̂̂H(Γ).

9.1. Derivation of the formulation. The multi-trace FEM-BEM formulation can be seen as the single-
trace FEM-BEM formulation (7.6) applied to gap configurations with vanishing gap. However, it is
difficult to study the vanishing gap limit with a rigorous mathematical argument. Following the idea
in [7, §8], the multi-trace formulation is rather obtained by trying to eliminate from the single-trace
formulation (7.6) all the contributions on Γ0. Essentially this is achieved by exploiting repeatedly the
modified polarity identity (5.6) and the variational characterization of transmission conditions (5.8).

We first reshape the right-hand side of formulation (7.6), more precisely the term −[uinc,Θ(v)]Γ,
where uinc = (γ0Uinc,0, . . . ,0). Since Uinc ∈ Hloc(∆,Rd), we can apply (5.8) to write, for v ∈ X(Γ)
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 27

(from which Θ(v) ∈ X(Γ)),

−[uinc,Θ(v)]Γ =−[γ0Uinc,θ(v0)]Γ0 +[γ(Uinc),Θ(v)]Γ +[γΣUinc,T(Θ(v))]Σ

=
n

∑
j=1

[γ jUinc,θ(v j)]Γ j +
[
γ

ΣUinc,θT(v)
]

Σ
.

(9.5)

Next, we focus on the left-hand side of formulation (7.6). By (5.6) we write

[A(u),Θ(v)]Γ = [A(u),Θ(v)]Γ +
(
[u,Θ(v)]Γ +[T(u),T(Θ(v))]Σ

)
/2

=
n

∑
j=0

[(A j
κ j + Id/2)u j,θ(v j)]Γ j +[T(u),T(Θ(v))]Σ/2

= [γ0G0
κ0
(u0),θ(v0)]Γ0 +

n

∑
j=1

[(A j
κ j + Id/2)u j,θ(v j)]Γ j +[T(u),T(Θ(v))]Σ/2,

(9.6)

where we have brought out the term with contributions on Γ0 that needs to be rewritten, and applied
(4.10). Now, since (u,T(u)) ∈ X̃(Γ) (see definition (5.9)), [7, Lemma 8.1] yields

n

∑
j=0

G
j
κ0(u j)(xxx)+GΣ

κ0
(T(u))(xxx) = 0 for xxx ∈ Ω0,

thus, taking interior traces on Γ0 and testing against θ(v0), we get

(9.7) [γ0G0
κ0
(u0),θ(v0)]Γ0 =−

n

∑
j=1

[γ0G
j
κ0(u j),θ(v0)]Γ0 − [γ0GΣ

κ0
(T(u)),θ(v0)]Γ0 .

We wish to examine each term on the right-hand side of (9.7). To this purpose, take an arbitrary
j = 1, . . . ,n and follow the procedure described in Remark 5.4 to construct the element w̃= (w,wΣ) =

(w0, . . . ,wn,wΣ) ∈ X̃(Γ) defined as

wq := γ
qG

j
κ0(u j) if q ̸= j, w j := γ

j
cG

j
κ0(u j), wΣ := T(w) = γ

ΣG
j
κ0(u j).

So, by (5.6) we have, for v ∈ X(Γ), [w,Θ(v)]Γ +[wΣ,T(Θ(v))]Σ = 0, that is, after splitting,

[γ0G
j
κ0(u j),θ(v0)]Γ0 =−

n

∑
q=1,q̸= j

[γqG
j
κ0(u j),θ(vq)]Γq

− [γ j
cG

j
κ0(u j),θ(v j)]Γ j − [γΣG

j
κ0(u j),T(Θ(v))]Σ,

and in a similar way, using again the construction in Remark 5.4, we obtain

[γ0GΣ
κ0
(T(u)),θ(v0)]Γ0 =−

n

∑
q=1

[γqGΣ
κ0
(T(u)),θ(vq)]Γq − [γΣ

c G
Σ
κ0
(T(u)),T(Θ(v))]Σ.

Then, substituting the last two expressions in (9.7) we get

[γ0G0
κ0
(u0),θ(v0)]Γ0 =

n

∑
j=1

( n

∑
q=1,q̸= j

[γqG
j
κ0(u j),θ(vq)]Γq +[γΣG

j
κ0(u j),T(Θ(v))]Σ

)
+

n

∑
q=1

[γqGΣ
κ0
(T(u)),θ(vq)]Γq +

n

∑
j=1

[γ j
cG

j
κ0(u j),θ(v j)]Γ j +[γΣ

c G
Σ
κ0
(T(u)),T(Θ(v))]Σ.
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 28

Finally, we plug the equation above into the initial rewriting (9.6) and, recalling that by (4.11)
γ

j
cG

j
κ0 = A

j
κ0 − Id/2, we obtain

[A(u),Θ(v)]Γ =
n

∑
j=1

[(A j
κ j + Id/2)u j,θ(v j)]Γ j +[T(u),T(Θ(v))]Σ/2

+
n

∑
j=1

[(A j
κ0 − Id/2)u j,θ(v j)]Γ j +[(AΣ

κ0
− Id/2)T(u),T(Θ(v))]Σ

+
n

∑
j=1

( n

∑
q=1,q ̸= j

[γqG
j
κ0(u j),θ(vq)]Γq +[γΣG

j
κ0(u j),T(Θ(v))]Σ

)
+

n

∑
q=1

[γqGΣ
κ0
(T(u)),θ(vq)]Γq ,

that is, simplifying,

[A(u),Θ(v)]Γ =
n

∑
j=1

[(A j
κ j +A

j
κ0)u j,θ(v j)]Γ j +[AΣ

κ0
T(u),θT(v)]Σ

+
n

∑
j=1

( n

∑
q=1,q ̸= j

[γqG
j
κ0(u j),θ(vq)]Γq +[γΣG

j
κ0(u j),θT(v)]Σ

)
+

n

∑
q=1

[γqGΣ
κ0
(T(u)),θ(vq)]Γq .

(9.8)

To sum up, if we define the continuous linear operator ̂̂A : ̂̂H(Γ)→ ̂̂H(Γ) as

(9.9) ̂̂A :=


A1

κ1
+A1

κ0
γ1G2

κ0
. . . γ1Gn

κ0
γ1GΣ

κ0
γ2G1

κ0
A2

κ2
+A2

κ0
γ2Gn

κ0
γ2GΣ

κ0
...

. . .
...

γnG1
κ0

γnG2
κ0

An
κn +An

κ0
γnGΣ

κ0
γΣG1

κ0
γΣG2

κ0
. . . γΣGn

κ0
AΣ

κ0


and for compact notation we set

ˆ̂u := (u1, . . . ,un,(γ
Σ
DU,TN(u))), ˆ̂v := (v1, . . . ,vn,(γ

Σ
DV,TN(v))),

ˆ̂f := (γ1Uinc, . . . ,γ
nUinc,γ

ΣUinc),

using the transformed expressions (9.8) and (9.5), where we additionally replace TD(u) = γΣ
DU ,

TD(v) = γΣ
DV , we have found that the single-trace FEM-BEM formulation (7.6) is equivalent to

find (U,u) ∈ X(ΩΣ,Γ) such that

aΣ(U,V )+⦃

̂̂A( ˆ̂u),Θ( ˆ̂v)⦄+
1
2
[(

γ
Σ
DU,TN(u)

)
,(γΣ

DV,TN(v))
]

Σ

= FΣ(V )+⦃

ˆ̂f,Θ( ˆ̂v)⦄ ∀(V,v) ∈ X(ΩΣ,Γ).
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 29

This new expression does not have any contributions on Γ0, except for TN(u), TN(v) ∈ H−1/2(Σ) that
in particular depend on p0,q0. In the spirit of [7, §9] and the discussion at the beginning of this section,
we now replace the function space X(ΩΣ,Γ) by the space with decoupled traces H1(ΩΣ)×Ĥ(Γ), which
is a more flexible functional setting. In particular, we replace TN(u),TN(v) by some pΣ,qΣ ∈ H−1/2(Σ).
Then, we define the global multi-trace FEM-BEM formulation

(9.10)

find (U, û) ∈ H1(ΩΣ)× Ĥ(Γ), û= (û1, . . . , ûn, pΣ), such that

aΣ(U,V )+⦃

̂̂A( ˆ̂u),Θ( ˆ̂v)⦄+
1
2
[(

γ
Σ
DU, pΣ

)
,
(
γ

Σ
DV,qΣ

)]
Σ

= FΣ(V )+⦃

ˆ̂f,Θ( ˆ̂v)⦄ ∀(V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), v̂= (v̂1, . . . , v̂n,qΣ)

where ˆ̂u := (û1, . . . , ûn,(γ
Σ
DU, pΣ)), ˆ̂v := (v̂1, . . . , v̂n,(γ

Σ
DV,qΣ)),

ˆ̂f := (γ1Uinc, . . . ,γ
nUinc,γ

ΣUinc).

Note that ̂̂A, defined in (9.9), is a full-matrix operator with off-diagonal terms γqG
j
κ0 , γΣG

j
κ0 , γqGΣ

κ0
that

couple all subdomains with all other subdomains, hence the attribute global. The attribute multi-trace
comes from the fact that the unknown traces are doubled on each interface that separates two (bounded)
subdomains.

The expanded expression for the multi-trace FEM-BEM formulation (9.10) reads: find (U, û) ∈
H1(ΩΣ)× Ĥ(Γ), û= (û1, . . . , ûn, pΣ), such that

aΣ(U,V )+
n

∑
j=1

[(A j
κ j +A

j
κ0)û j,θ(v̂ j)]Γ j +

[
AΣ

κ0

(
γ

Σ
DU, pΣ

)
,θ

(
γ

Σ
DV,qΣ

)]
Σ

+
n

∑
j=1

( n

∑
q=1,q̸= j

[γqG
j
κ0(û j),θ(v̂q)]Γq +

[
γ

ΣG
j
κ0(û j),θ

(
γ

Σ
DV,qΣ

)]
Σ

)
+

n

∑
q=1

[
γ

qGΣ
κ0

(
γ

Σ
DU, pΣ

)
,θ(v̂q)

]
Γq
+

1
2
[(

γ
Σ
DU, pΣ

)
,
(
γ

Σ
DV,qΣ

)]
Σ

= FΣ(V )+
n

∑
j=1

[γ jUinc,θ(v̂ j)]Γ j +
[
γ

ΣUinc,θ
(
γ

Σ
DV,qΣ

)]
Σ

(9.11)

for all (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), v̂= (v̂1, . . . , v̂n,qΣ).

Remark 9.1. Note that in the case n= 0 of a single (heterogeneous) scatterer the multi-trace formulation
(9.10) reduces to the Costabel coupling (6.7), just as the single-trace formulation (7.6). Indeed, in this
case Rd = Ω0∪ΩΣ and Ĥ(Γ) = H−1/2(Σ). Then the expanded expression (9.11) simply becomes: find
(U, pΣ) ∈ H1(ΩΣ)×H−1/2(Σ) such that

aΣ(U,V )+
[
AΣ

κ0

(
γ

Σ
DU, pΣ

)
,
(
−γ

Σ
DV,qΣ

)]
Σ
+

1
2
[(

γ
Σ
DU, pΣ

)
,
(
γ

Σ
DV,qΣ

)]
Σ
=

FΣ(V )+
[
γ

ΣUinc,
(
−γ

Σ
DV,qΣ

)]
Σ

∀(V,qΣ) ∈ H1(ΩΣ)×H−1/2(Σ).
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 30

Moreover, set u = (u0, p0) = (γΣ
DU,−pΣ) and v = (v0,q0) = (γΣ

DV,−qΣ), so that (U,u) ∈ X(ΩΣ,Γ)
and (V,v) ∈X(ΩΣ,Γ). Note that T(u) = (γΣ

DU, pΣ), T(v) = (γΣ
DV,qΣ), and γΣUinc = (γ0

DUinc,−γ0
NUinc).

We can also write

AΣ
κ0

(
γ

Σ
DU, pΣ

)
= AΣ

κ0
(u0,−p0) =

(
{γ

0
D},−{γ

0
N}
)
◦
(
−G0

κ0
(u0, p0)

)
=
(
−{γ

0
D},{γ

0
N}
)
◦G0

κ0
(u),

so we get: find (U,u) ∈ X(ΩΣ,Γ) such that

aΣ(U,V )+
[(
−{γ

0
D},{γ

0
N}
)
◦G0

κ0
(u),(−v0,−q0)

]
Γ
+

1
2
[T(u),T(v)]Σ =

FΣ(V )+
[(

γ
0
DUinc,−γ

0
NUinc

)
,(−v0,−q0)

]
Γ

∀(V,v) ∈ X(ΩΣ,Γ),

and also the signs turn out to agree with those in formulation (6.7).

9.2. Properties of the multi-trace FEM-BEM formulation. The relationship between the multi-
trace FEM-BEM formulation (9.10) and the transmission problem (2.4) is examined in the following
proposition.

Proposition 9.2 (Link with the transmission problem). If (U, û)∈H1(ΩΣ)×Ĥ(Γ), û=(û1, . . . , ûn, pΣ)∈
Ĥ(Γ), solve (9.10), then the solution to (2.4) is given by

Ũ(xxx) :=U(xxx) for xxx ∈ ΩΣ,

Ũ(xxx) :=
(

Uinc −GΣ
κ0

(
γ

Σ
DU, pΣ

)
−

n

∑
j=1

G
j
κ0(û j)

)
(xxx) for xxx ∈ Ω0,

Ũ(xxx) := G
j
κ j(û j)(xxx) for xxx ∈ Ω j, j = 1, . . . ,n.

(9.12)

Proof. First of all, (Ũ −Uinc)|Ω0 =−GΣ
κ0
(γΣ

DU , pΣ)−∑
n
j=1G

j
κ0(û j) is κ0-outgoing radiating in Ω0, see

e.g. [11, Theorem 3.2]. It is also clear that Ũ satisfies the Helmholtz equation in Ω j, j = 1, . . . ,n
since it is satisfied by the potentials (see e.g. [11, §2.4]), and in Ω0 since it is also satisfied by Uinc
by definition. By testing (9.10) with V ∈ H1

0(ΩΣ), v̂ = 0, we get aΣ(U,V ) = aΣ(Ũ ,V ) = FΣ(V ),
so Ũ satisfies the Helmholtz equation also in ΩΣ. The property that remains to be verified is the
transmission conditions: by characterization (5.8) it is sufficient to show that for all v ∈ X(Γ) we have
[γ(Ũ),v]Γ +[γΣ(Ũ),T(v)]Σ = 0, i.e., by definition of Ũ ,

(9.13)
[

γ
0Uinc − γ

0GΣ
κ0

(
γ

Σ
DU, pΣ

)
−

n

∑
j=1

γ
0G

j
κ0(û j),v0

]
Γ0

+
n

∑
j=1

[γ jG
j
κ j(û j),v j]Γ j +[γΣU,T(v)]Σ = 0.

We fix an arbitrary v ∈X(Γ) and denote v∗ := (v1, . . . ,vn,TN(v)) ∈ Ĥ(Γ). Since Ũ |ΩΣ
=U satisfies

the Helmholtz equation in ΩΣ, integrating by parts we get

(9.14) aΣ(U,V )−FΣ(V ) = ⟨γΣ
NU,γΣ

DV ⟩
Σ

∀V ∈ H1(ΩΣ).

Moreover, by (4.10)-(4.11), we have

(9.15) A
j
κ j +A

j
κ0 = γ

jG
j
κ j + γ

j
cG

j
κ0 , j = 1, . . . ,n, AΣ

κ0
= γ

Σ
c G

Σ
κ0
+ Id/2.
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 31

Thus, if we test formulation (9.10) (or its expanded form (9.11)) with V satisfying γΣ
DV = TD(v) and

with v̂= v∗, using (9.14)-(9.15), we obtain

0 = ⟨γΣ
NU,TD(v)⟩Σ

+
n

∑
j=1

(
[γ jG

j
κ j(û j),θ(v j)]Γ j +[γ j

cG
j
κ0(û j),θ(v j)]Γ j

)
+
[
γ

Σ
c G

Σ
κ0

(
γ

Σ
DU, pΣ

)
,T(Θ(v))

]
Σ
+

1
2
[(

γ
Σ
DU, pΣ

)
,T(Θ(v))

]
Σ

+
n

∑
j=1

( n

∑
q=1,q ̸= j

[γqG
j
κ0(û j),θ(vq)]Γq +[γΣG

j
κ0(û j),T(Θ(v))]Σ

)
+

n

∑
q=1

[
γ

qGΣ
κ0

(
γ

Σ
DU, pΣ

)
,θ(vq)

]
Γq
+

1
2
[(

γ
Σ
DU, pΣ

)
,T(v)

]
Σ

−
n

∑
j=1

[γ jUinc,θ(v j)]Γ j −
[
γ

ΣUinc,T(Θ(v))
]

Σ
,

(9.16)

that is, gathering terms conveniently, 0 = t1 + t2 + t3 + t4 + t5, where

t1 =
n

∑
j=1

[γ jG
j
κ j(û j),θ(v j)]Γ j

t2 = ⟨γΣ
NU,TD(v)⟩Σ

+
1
2
[(

γ
Σ
DU, pΣ

)
,T(Θ(v))

]
Σ
+

1
2
[(

γ
Σ
DU, pΣ

)
,T(v)

]
Σ

t3 =
n

∑
j=1

(
[γ j

cG
j
κ0(û j),θ(v j)]Γ j +

n

∑
q=1,q̸= j

[γqG
j
κ0(û j),θ(vq)]Γq +[γΣG

j
κ0(û j),T(Θ(v))]Σ

)
t4 =

[
γ

Σ
c G

Σ
κ0

(
γ

Σ
DU, pΣ

)
,T(Θ(v))

]
Σ
+

n

∑
q=1

[
γ

qGΣ
κ0

(
γ

Σ
DU, pΣ

)
,θ(vq)

]
Γq

t5 =−
n

∑
j=1

[γ jUinc,θ(v j)]Γ j −
[
γ

ΣUinc,T(Θ(v))
]

Σ
.

First of all, note that the term t2 simplifies into [γΣU,T(Θ(v))]Σ, which is exactly the last term of the
sought equation (9.13), but with v replaced by Θ(v). In order to treat the other terms we will employ
the polarity identity (5.6) and the procedure described in Remark 5.4 three times. First, for a given
j = 1, . . . ,n, we have (γ0G

j
κ0(û j), . . . ,γ

j
cG

j
κ0(û j), . . . ,γ

nG
j
κ0(û j),γ

ΣG
j
κ0(û j)) ∈ X̃(Γ), thus

[γ j
cG

j
κ0(û j),θ(v j)]Γ j +

n

∑
q=1,q ̸= j

[γqG
j
κ0(û j),θ(vq)]Γq +[γΣG

j
κ0(û j),T(Θ(v))]Σ

=−[γ0G
j
κ0(û j),θ(v0)]Γ0 .

(9.17)

Second, we have (γ0GΣ
κ0
(γΣ

DU , pΣ), . . . ,γ
nGΣ

κ0
(γΣ

DU , pΣ),γ
Σ
c G

Σ
κ0
(γΣ

DU , pΣ)) ∈ X̃(Γ), thus
n

∑
q=1

[
γ

qGΣ
κ0

(
γ

Σ
DU, pΣ

)
,θ(vq)

]
Γq
+
[
γ

Σ
c G

Σ
κ0

(
γ

Σ
DU, pΣ

)
,T(Θ(v))

]
Σ

=−
[
γ

0GΣ
κ0

(
γ

Σ
DU, pΣ

)
,θ(v0)

]
Γ0
.

(9.18)
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Third, we have (γ0Uinc, . . . ,γ
nUinc,γ

ΣUinc) ∈ X̃(Γ), thus

(9.19)
n

∑
j=1

[γ jUinc,θ(v j)]Γ j +
[
γ

ΣUinc,T(Θ(v))
]

Σ
=−[γ0Uinc,θ(v0)]Γ0 .

Now, use (9.17) summed over j = 1, . . . ,n, (9.18), (9.19) to replace respectively t3, t4, t5, therefore
(9.16) becomes

0 =
n

∑
j=1

[γ jG
j
κ j(û j),θ(v j)]Γ j −

n

∑
j=1

[γ0G
j
κ0(û j),θ(v0)]Γ0 −

[
γ

0GΣ
κ0

(
γ

Σ
DU, pΣ

)
,θ(v0)

]
Γ0

+[γ0Uinc,θ(v0)]Γ0 +[γΣU,T(Θ(v))]Σ,

that is exactly the sought equation (9.13), but with v replaced by Θ(v), which is not a problem since Θ

is an automorphism. □

As suggested by the gap idea, also the multi-trace FEM-BEM formulation (9.10) satisfies a Gårding
inequality:

Proposition 9.3 (Gårding inequality). Let aMTF : (H1(ΩΣ)×Ĥ(Γ))×(H1(ΩΣ)×Ĥ(Γ))→C designate
the bilinear form on the left-hand side of (9.10). There exist a compact bilinear form K : (H1(ΩΣ)×
Ĥ(Γ))× (H1(ΩΣ)× Ĥ(Γ))→ C and a constant β > 0 such that

Re
{
aMTF

(
(V, v̂),(V , v̂)

)
+K

(
(V, v̂),(V , v̂)

)}
≥ β (∥V∥2

H1(ΩΣ)
+∥v̂∥2

Ĥ(Γ)
)

for all (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ).

Proof. We need to examine

aMTF
(
(V, v̂),(V , v̂)

)
= aΣ(V,V )+⦃

̂̂A( ˆ̂v),Θ( ˆ̂v)⦄+
1
2
[(

γ
Σ
DV,qΣ

)
,
(
γ

Σ
DV ,qΣ

)]
Σ
,

where ˆ̂v := (v̂1, . . . , v̂n,(γ
Σ
DV,qΣ)). As already mentioned, aΣ satisfies a Gårding inequality as in [18,

Lemma 3.2], and
Re

{[(
γ

Σ
DV,qΣ

)
,
(
γ

Σ
DV ,qΣ

)]
Σ

}
= 0.

For the remaining term ⦃

̂̂A( ˆ̂v),Θ( ˆ̂v)⦄, we proceed exactly as in the proof of [8, Proposition 6.3], except
that v̂n+1 := (γΣ

DV ,qΣ) in the present case. Indeed, note that the first concise equality at the beginning
of the proof of [8, Proposition 6.3] fits exactly the expression of ̂̂A. Thus, we obtain that, for the case
κ0 = · · ·= κn = ı, there exists β̃ > 0 such that

Re⦃̂̂A( ˆ̂v),Θ( ˆ̂v)⦄≥ β̃

n+1

∑
j=1

∥v̂ j∥2
H(Γ j)

= β̃

(
∥v̂∥2

Ĥ(Γ)
)+∥γ

Σ
DV∥2

H1/2(Σ)

)
,

which leads to the desired conclusion since a change of the wavenumbers κ0, . . . ,κn only induces a
compact perturbation of the integral operators appearing in ̂̂A (see e.g. [22, Lemma 3.9.8]). □

Again, in the case of injectivity all the nice consequences recalled below Proposition 7.2 would
follow from the Gårding inequality. Hence, in the following proposition we examine the injectivity
condition for the multi-trace FEM-BEM formulation (9.10). Note that the gap configuration falls
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exactly within the case Σ ⊂ Γ0, in which spurious resonances affect the single-trace FEM-BEM
formulation (7.6) if κ0 ∈S(∆,ΩΣ) (recall Proposition 7.3), so the following result is not surprising.

Proposition 9.4 (Injectivity condition). Let (U, û) ∈ H1(ΩΣ)× Ĥ(Γ) solves formulation (9.10) with
FΣ ≡ 0, ˆ̂f = 0. Then U = 0. We also have û = 0 if κ0 /∈ S(∆,ΩΣ). If κ0 ∈ S(∆,ΩΣ), there exists
û ∈ Ĥ(Γ)\{0} such that (0, û) ∈ H1(ΩΣ)× Ĥ(Γ) solves (9.10) with FΣ ≡ 0, ˆ̂f= 0.

Proof. By Proposition 9.2, the function Ũ defined in (9.12) solves the homogeneous transmis-
sion problem (2.4), which is well-posed, so Ũ = 0. In particular, U = Ũ |ΩΣ

= 0 and γΣ
DU = 0.

Therefore, if we test formulation (9.10) with FΣ ≡ 0, ˆ̂f = 0 using test functions V ∈ H1
0(ΩΣ) (and

v̂= (v̂1, . . . , v̂n,qΣ) ∈ Ĥ(Γ)), we obtain

⦃

̂̂A( ˆ̂u),Θ( ˆ̂v)⦄= 0, with ˆ̂u= (û1, . . . , ûn,(0, pΣ)), ˆ̂v= (v̂1, . . . , v̂n,(0,qΣ)),

which reduces to JÂ(û),Θ(v̂)K = 0, where Â is the operator defined in [8, Equation (6.3)]. Then
û ∈ ker(Â) and, by [8, Proposition 6.4], if κ0 /∈S(∆,ΩΣ) we get û= 0.

Now we show that κ0 /∈S(∆,ΩΣ) is also a necessary condition. If κ0 ∈S(∆,ΩΣ), by [22, Theorem
3.9.1] we know that ker(γΣ

DSL
Σ
κ0
) ̸= {0}, and we consider p ∈ ker(γΣ

DSL
Σ
κ0
)\{0}. As γΣ

DSL
Σ
κ0
(p) = 0,

by jump relations (4.6) we have γΣ
D,cSL

Σ
κ0
(p) = 0, and, since the exterior Helmholtz boundary value

problem is well-posed, we get SLΣ
κ0
(p)(xxx) = 0 for xxx ∈ Rd\ΩΣ. Therefore, γqSLΣ

κ0
(p) = 0 for all

q = 1, . . . ,n and γΣ
N,cSL

Σ
κ0
(p) = 0. In particular, using (4.11),

AΣ
κ0
(0, p) = γ

Σ
c SL

Σ
κ0
(p)+(0, p)/2 = (0, p/2) .

Then, if we evaluate the left-hand side of formulation (9.10) in U∗ = 0, û∗ = (0, . . . ,0, p) we have
n

∑
q=1

[γqSLΣ
κ0
(p),θ(v̂q)]Γq +

[
(0, p/2) ,

(
−γ

Σ
DV,qΣ

)]
Σ
+

1
2
[
(0, p) ,

(
γ

Σ
DV,qΣ

)]
Σ
= 0,

for all (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), and we have found a non-trivial solution. □

Comparing the injectivity conditions in Propositon 7.3 and Proposition 9.4, we see that in the
case Σ ⊂ Γ0, if the single-trace formulation (7.6) suffer from spurious resonances then so does the
multi-trace formulation (9.10). On the other hand, in the case Σ ̸⊂ Γ0, there are wavenumbers κ0 for
which the multi-trace formulation (9.10) breaks down, while the single-trace formulation (7.6) remains
injective. If the single-trace formulation (7.6) fails to be injective because Σ ⊂ Γ1 and κ1 ∈S(∆,ΩΣ),
but κ0 /∈S(∆,ΩΣ), the multi-trace formulation (9.10) is instead well-posed. Note that we could write
a multi-trace formulation based on another subdomain than Ω0, say Ωi, loosely speaking by filling the
gap with the same medium as Ωi.

10. Multi-trace combined field FEM-BEM formulation

We have shown that the multi-trace FEM-BEM formulation (9.10) is affected by spurious resonances
when κ0 ∈S(∆,ΩΣ). Again, as a remedy, we adapt the approach of combined field integral equations.
More precisely, as the standard multi-trace FEM-BEM formulation (9.10) was obtained by manipulating
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the standard single-trace FEM-BEM formulation (7.6), similarly we will obtain a combined field multi-
trace FEM-BEM formulation by manipulating the combined field single-trace FEM-BEM formulation
(8.7). Since the difference between (7.6) and (8.7) lies only in the compact bilinear form c and in the
right-hand side with ũinc defined in (8.6), we just need to elaborate these terms.

As in [8, §6.4] we first derive the formulation in the gap setting, and we look for̂̂c : (H1(ΩΣ)× Ĥ(Γ))2 → C such that ̂̂c((U, û),(V, v̂)) = c(u,v)

where (U, û), (V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ) correspond respectively to (U,u), (V,v) ∈ X(ΩΣ,Γ) under the
isomorphism defined at the beginning of §9. Observe that in the gap setting, where Σ ⊂ ∂Ω0, the
extension operator EΣ can be picked to map into functions whose support is inside Ω0 ∪ΩΣ, so that
γ

j
D ◦EΣ = 0 for j ̸= 0 and the operator C in (8.3), essentially, maps into H1/2(Σ). Then, applying also

(4.11),

c(u,v) =
n

∑
j=0

[
γ

j
cG

j
κ j(u j),θ(Cv) j

]
Γ j

=
[
γ

0
c G

0
κ0
(u0),θ(Cv)0

]
Γ0

=−
〈
γ

Σ
NG

0
κ0
(u0),MTN(v)

〉
Σ
,

where we have used the definition of C, γ0
N,c =−γΣ

N , γ0
D = γΣ

D , γΣ
D ◦EΣ = Id. Moreover, since (U,u) ∈

X(ΩΣ,Γ), in the gap setting u0 equals φ(u j) on each Γ j, j = 1, . . . ,n, and equals φ(γΣ
DU,TN(u)) on

Σ, that reflects exactly the isomorphism defined at the beginning of §9. This implies G0
κ0
(u0) =

−GΣ
κ0
(γΣ

DU,TN(u))−∑
n
j=1G

j
κ0(u j). Therefore, for û= (û1, . . . , ûn, pΣ) ∈ Ĥ(Γ), v̂= (v̂1, . . . , v̂n,qΣ) ∈

Ĥ(Γ), we get

̂̂c((U, û),(V, v̂)) :=
〈
M∗

γ
Σ
NG

Σ
κ0

(
γ

Σ
DU, pΣ

)
,qΣ

〉
Σ
+

n

∑
j=1

〈
M∗

γ
Σ
NG

j
κ0(û j),qΣ

〉
Σ

.

Now, summing the term in (9.10) that derives from [A(u),Θ(v)]Γ we write

⦃

̂̂A( ˆ̂u),Θ( ˆ̂v)⦄+̂̂c((U, û),(V, v̂)) = ⦃

̂̂AM( ˆ̂u),Θ( ˆ̂v)⦄

where
ˆ̂u := (û1, . . . , ûn,(γ

Σ
DU, pΣ)), ˆ̂v := (v̂1, . . . , v̂n,(γ

Σ
DV,qΣ)), and

̂̂AM :=


A1

κ1
+A1

κ0
γ1G2

κ0
. . . γ1Gn

κ0
γ1GΣ

κ0
γ2G1

κ0
A2

κ2
+A2

κ0
γ2Gn

κ0
γ2GΣ

κ0
...

. . .
...

γnG1
κ0

γnG2
κ0

An
κn +An

κ0
γnGΣ

κ0(
γΣ

D+M∗γΣ
N

γΣ
N

)
G1

κ0

(
γΣ

D+M∗γΣ
N

γΣ
N

)
G2

κ0
. . .

(
γΣ

D+M∗γΣ
N

γΣ
N

)
Gn

κ0
AΣ

κ0
+
(
M∗γΣ

N
0

)
GΣ

κ0

 .

Note that ̂̂AM differs from ̂̂A only in the Dirichlet traces on Σ in the last line.
In a similar way, for the right-hand side −[ũinc,v]Γ =−[uinc,Θ(Id+C)(v)]Γ, we get

[uinc,ΘC(v)]Γ = [γ0Uinc,θ(Cv)0]Γ0 =−⟨γΣ
NUinc,MTN(v)⟩Σ

=−⟨M∗
γ

Σ
NUinc,TN(v)⟩Σ

and combining with the term in (9.10) that derives from −[uinc,Θ(v)]Γ we write

ˆ̂fM :=
(

γ1Uinc, . . . ,γ
nUinc,

(
γΣ

D+M∗γΣ
N

γΣ
N

)
Uinc

)
.
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In conclusion, we define the global multi-trace combined field FEM-BEM formulation

(10.1)

find (U, û) ∈ H1(ΩΣ)× Ĥ(Γ), û= (û1, . . . , ûn, pΣ), such that

aΣ(U,V )+⦃

̂̂AM( ˆ̂u),Θ( ˆ̂v)⦄+
1
2
[(

γ
Σ
DU, pΣ

)
,
(
γ

Σ
DV,qΣ

)]
Σ

= FΣ(V )+⦃

ˆ̂fM,Θ( ˆ̂v)⦄ ∀(V, v̂) ∈ H1(ΩΣ)× Ĥ(Γ), v̂= (v̂1, . . . , v̂n,qΣ)

where ˆ̂u := (û1, . . . , ûn,(γ
Σ
DU, pΣ)), ˆ̂v := (v̂1, . . . , v̂n,(γ

Σ
DV,qΣ)).

Even if we have derived this formulation in the gap setting, it is still valid in a general geometric
configuration such as Figure 4, left. This will be justified in what follows. We first show which is
the relationship of its solutions with the solutions to the standard multi-trace FEM-BEM formulation
(9.10).

Proposition 10.1. A solution to the combined field multi-trace FEM-BEM formulation (10.1) is also a
solution to the standard multi-trace FEM-BEM formulation (9.10).

Proof. Let (U, û) be a solution to formulation (10.1). Then, if we take test functions V = 0, v̂ =

(0, . . . ,0,qΣ) with some qΣ ∈ H−1/2(Σ) (thus γΣ
DV = 0, ˆ̂v= (0, . . . ,0,(0,qΣ))), it yields〈

n

∑
j=1

(γΣ
D +M∗

γ
Σ
N )G

j
κ0(û j)+({γ

Σ
D}+M∗

γ
Σ
N )G

Σ
κ0

(
γ

Σ
DU, pΣ

)
,qΣ

〉
Σ

+
1
2
〈
γ

Σ
DU,qΣ

〉
Σ

=
〈
(γΣ

D +M∗
γ

Σ
N )Uinc,qΣ

〉
Σ

∀qΣ ∈ H−1/2(Σ),

and, since 〈
{γ

Σ
D}GΣ

κ0

(
γ

Σ
DU, pΣ

)
,qΣ

〉
Σ
=
〈
γ

Σ
DG

Σ
κ0

(
γ

Σ
DU, pΣ

)
,qΣ

〉
Σ
− 1

2
〈
γ

Σ
DU,qΣ

〉
Σ
,

we obtain〈
(γΣ

D +M∗
γ

Σ
N )

(
Uinc −

n

∑
j=1

G
j
κ0(û j)−GΣ

κ0

(
γ

Σ
DU, pΣ

))
,qΣ

〉
Σ

= 0 ∀qΣ ∈ H−1/2(Σ).

Therefore, if we introduce

(10.2) W :=Uinc −
n

∑
j=1

G
j
κ0(û j)−GΣ

κ0

(
γ

Σ
DU, pΣ

)
,

this means γΣ
DW =−M∗γΣ

NW . Moreover, W solves −∆W −κ2
0W = 0 in ΩΣ, so by Green’s formula∫

ΩΣ

(|∇W |2 −κ
2
0 |W |2)dxxx =−

〈
γ

Σ
NW ,M∗

γ
Σ
NW

〉
Σ
,

and taking the imaginary part, since κ0 ∈ R, we obtain 0 = − Im{⟨MγΣ
NW ,γΣ

NW ⟩
Σ
}, that implies

γΣ
NW = 0 by property (8.1b) of M. As a consequence γΣ

DW =−M∗γΣ
NW = 0. The conclusion γΣ

DW = 0
finishes the proof because, looking at the definition of W , this corresponds exactly to the equation in
formulation (9.10) associated with the Dirichlet component of the last line of ̂̂A and ˆ̂f, which represents
the only difference between formulations (9.10) and (10.1). □
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MULTI-DOMAIN FEM-BEM COUPLING FOR ACOUSTIC SCATTERING 36

A corollary of this proposition is that if (U, û) satisfies formulation (10.1), then the unique solution
to the transmission problem (2.4) is given by Ũ in (9.12). This justifies considering formulation (10.1)
for general geometric settings.

Moreover, by the compactness of M, the block operator ̂̂AM is a compact perturbation of ̂̂A, so a
Gårding inequality analogue to Proposition 9.3 still holds, and the induced operator is of Fredholm type
with index 0. Therefore, in the case of injectivity, all the good properties recalled below Proposition 7.2
follow. As desired, the combined field formulation (10.1) is immune to spurious resonances for any
choice of the positive wavenumbers κ j:

Proposition 10.2 (Injectivity). Let (U, û) ∈ H1(ΩΣ)× Ĥ(Γ) solve formulation (10.1) with FΣ ≡ 0,
ˆ̂fM = 0. Then U = 0, û= 0.

Proof. Since ˆ̂fM = 0 we have Uinc = 0. As a consequence proceeding as in the beginning of the proof
of Proposition 10.1 leads to considering W :=−∑

n
j=1G

j
κ0(û j)−GΣ

κ0
(γΣ

DU, pΣ) and, following the same

argumentation as above, this function satisfies γΣ
N (W ) = 0. According to the definition of ̂̂AM, this

implies ̂̂A+M( ˆ̂u) = ̂̂A( ˆ̂u) = ̂̂A−M( ˆ̂u)

since the terms involving M∗ in the last row of the definition of ̂̂AM vanish. Next, by Proposition 10.1,
(U, û) solves also formulation (9.10), so by Proposition 9.4 we get U = 0 and γΣ

DU = 0. Now, if we test
formulation (10.1) (with FΣ ≡ 0, ˆ̂fM = 0) using test functions V ∈ H1

0(ΩΣ) (and v̂= (v̂1, . . . , v̂n,qΣ) ∈
Ĥ(Γ)), we obtain ⦃

̂̂AM( ˆ̂u),Θ( ˆ̂v)⦄= 0 hence

⦃

̂̂A−M( ˆ̂u),Θ( ˆ̂v)⦄= 0

with ˆ̂u= (û1, . . . , ûn,(0, pΣ)), ˆ̂v= (v̂1, . . . , v̂n,(0,qΣ)). Note that this reduces to JÂM(û),Θ(v̂)K = 0 for
all v̂ ∈ Ĥ(Γ), where ÂM is defined in [8, Equation (6.21)] and is injective by [8, Proposition 6.7]. Then
û= 0. □

Appendix A. Properties of the block boundary integral operator AΩ
κ

We prove here two useful properties of the boundary integral operator AΩ
κ in (4.9) since we could not

find detailed proofs in the literature.

Proposition A.1 (Generalized Gårding inequality). Set θ(v,q) := (−v,q). Let Ω be a generic Lipschitz
domain that is either bounded or such that Rd \Ω is bounded. Then, there exist a compact operator
K : H(∂Ω)→H(∂Ω) and a constant α > 0 such that for all u ∈H(∂Ω) we have

Re
{
[(AΩ

κ +K )u,θ(u)]∂Ω

}
≥ α∥u∥2

H(∂Ω).

Proof. Since a change of the wavenumber κ only induces a compact perturbation of AΩ
κ [22, Lemma

3.9.8], it suffices to prove the result for the case κ = ı, where ı =
√
−1. Set ψ := GΩ

κ (u), then we write
AΩ

κ (u) = {γΩ}ψ and by the jump relations (4.6) we have u= [γΩ]ψ . Therefore[
AΩ

κ (u),θ(u)
]

∂Ω

=
[
{γ

Ω}ψ,θ [γΩ]ψ
]

∂Ω

=
1
2

[
(γΩ + γ

Ω
c )ψ,θ(γΩ − γ

Ω
c )ψ

]
∂Ω

= m1 +m2
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where

m1 =
1
2

[
γ

Ω
ψ,θγ

Ω
ψ

]
∂Ω

− 1
2

[
γ

Ω
c ψ,θγ

Ω
c ψ

]
∂Ω

,

m2 =
1
2

[
γ

Ω
c ψ,θγ

Ω
ψ

]
∂Ω

− 1
2

[
γ

Ω
ψ,θγ

Ω
c ψ

]
∂Ω

.

We have Re(m2) = 0, indeed

Re
{
[γΩ

c ψ,θγ
Ω

ψ]∂Ω

}
= Re

{
[γΩ

c ψ,θγΩψ]
∂Ω

}
= Re

{
[γΩ

c ψ,θγ
Ω

ψ]∂Ω

}
= Re

{
[γΩ

ψ,θγ
Ω
c ψ]∂Ω

}
,

where the last equality is an application of the property [u,θ(v)]∂Ω = [v,θ(u)]∂Ω for u,v∈H(∂Ω). To
deal with Re(m1), observe that we have Re{[v,θ(v)]∂Ω}= Re{⟨v,q⟩

∂Ω
+ ⟨v,q⟩

∂Ω
}= 2Re{⟨v,q⟩

∂Ω
}

for v= (v,q) ∈H(∂Ω). Thus

1
2

Re
{[

γ
Ω

ψ,θγ
Ω

ψ

]
∂Ω

}
= Re

{
⟨γΩ

D ψ,γΩ
N ψ⟩

∂Ω

}
= Re

{∫
Ω

(|∇ψ|2 +ψ∆ψ)dxxx
}
= ∥ψ∥2

H1(Ω),

where we integrated by parts and lastly used the fact that ψ is a solution to the Helmholtz equation
with κ = ı, so that ∆ψ = ψ . Similarly, we get

−1
2

Re
{[

γ
Ω
c ψ,θγ

Ω
c ψ

]
∂Ω

}
= ∥ψ∥2

H1(Rd\Ω)
,

therefore

Re
{[

AΩ
κ (u),θ(u)

]
∂Ω

}
= ∥ψ∥2

H1(Ω)+∥ψ∥2
H1(Rd\Ω)

.

Now, note that

∥ψ∥2
H1(∆,Ω) = ∥ψ∥2

H1(Ω)+∥∆ψ∥2
L2(Ω) = ∥ψ∥2

H1(Ω)+∥ψ∥2
L2(Ω) ≤ 2∥ψ∥2

H1(Ω),

and by the continuity of the trace operators, there exists C > 0 such that

∥γ
Ω
D V∥2

H1/2(∂Ω)
+∥γ

Ω
N V∥2

H−1/2(∂Ω)
≤C∥V∥2

H1(∆,Ω) ∀V ∈ H1(∆,Ω),

∥γ
Ω
D,cV∥2

H1/2(∂Ω)
+∥γ

Ω
N,cV∥2

H−1/2(∂Ω)
≤C∥V∥2

H1(∆,Rd\Ω)
∀V ∈ H1(∆,Rd\Ω).

Therefore

Re
{[

AΩ
κ (u),θ(u)

]
∂Ω

}
= ∥ψ∥2

H1(Ω)+∥ψ∥2
H1(Rd\Ω)

≥ 1
2C

(
∥γ

Ω
D ψ∥2

H1/2(∂Ω)
+∥γ

Ω
D,cψ∥2

H1/2(∂Ω)
+∥γ

Ω
N ψ∥2

H−1/2(∂Ω)
+∥γ

Ω
N,cψ∥2

H−1/2(∂Ω)

)
≥ 1

4C

(
∥(γΩ

D − γ
Ω
D,c)ψ∥2

H1/2(∂Ω)
+∥(γΩ

N − γ
Ω
N,c)ψ∥2

H−1/2(∂Ω)

)
=

1
4C

∥u∥2
H(∂Ω),

where we used the triangular inequality and the jump relations (4.6). □

Proposition A.2. Assume that either Ω⊂Rd is bounded or Rd \Ω is bounded. Then for all u∈H(∂Ω),
we have Im{[AΩ

κ (u),u]∂Ω} ≥ 0.
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Proof. Assume first that Rd \Ω is bounded, pick an arbitrary u ∈H(∂Ω) and set ψ(xxx) := GΩ
κ (u)(xxx).

We have [γΩ(ψ)] = u according to the jump formula (4.6) and, on the other hand, {γΩ(ψ)}= AΩ
κ (u)

according to definition (4.9). As a consequence, developing the expression 2[AΩ
κ (u),u]∂Ω = [γΩ(ψ)+

γΩ
c (ψ),γΩ(ψ)− γΩ

c (ψ)]∂Ω, yields

(A.1)

2[AΩ
κ (u),u]∂Ω = [γΩ(ψ),γΩ(ψ)]∂Ω − [γΩ

c (ψ),γΩ
c (ψ)]∂Ω

+[γΩ
c (ψ),γΩ(ψ)]∂Ω − [γΩ(ψ),γΩ

c (ψ)]∂Ω

= [γΩ(ψ),γΩ(ψ)]∂Ω − [γΩ
c (ψ),γΩ

c (ψ)]∂Ω

+2Re{[γΩ
c (ψ),γΩ(ψ)]∂Ω}.

Next observe that each of the first two terms in the right-hand side above takes the form [v,v]∂Ω

and satisfies [v,v]∂Ω = [v,v]∂Ω = −[v,v]∂Ω which means that they are pure imaginary numbers,
i.e. ı[v,v]∂Ω ∈ R. As a consequence

(A.2) 2ı Im{[AΩ
κ (u),u]∂Ω}=+[γΩ(ψ),γΩ(ψ)]∂Ω − [γΩ

c (ψ),γΩ
c (ψ)]∂Ω.

We examine each term in the right-hand side of this identity. Both ψ and ψ satisfy a homogeneous
Helmholtz equation in Rd \Ω and, since it is a bounded domain, we can apply Green’s formula in
Rd \Ω. This implies that the second term in the right-hand side of (A.2) vanishes:

[γΩ
c (ψ),γΩ

c (ψ)]∂Ω =
∫

∂Ω

γ
Ω
D,c(ψ)γΩ

N,c(ψ)− γ
Ω
N,c(ψ)γΩ

D,c(ψ)dσ

=
∫
Rd\Ω

ψ(∆ψ +κ
2
ψ)−ψ(∆ψ +κ

2
ψ)dxxx = 0.

To study the first term in (A.2) choose ρ > 0 large enough to have Rd \Ω ⊂ Bρ , where Bρ is the open
ball of center 0 and radius ρ . Applying Green’s formula in Ω∩Bρ gives

[γΩ(ψ),γΩ(ψ)]∂Ω =
∫

∂Ω

γ
Ω
D (ψ)γΩ

N (ψ)− γ
Ω
N (ψ)γΩ

D (ψ) dσ

=
∫

Ω∩Bρ

ψ(∆ψ +κ
2
ψ)−ψ(∆ψ +κ

2
ψ)dxxx +

∫
∂Bρ

ψ∂ρψ −ψ∂ρψ dσρ

where ∂ρψ is the Neumann trace on ∂Bρ and dσρ is the surface measure on ∂Bρ . The volume terms
vanish because ∆ψ +κ2ψ = 0 in Ω. Multiplying this identity by −ıκ then leads to

−ıκ[γΩ(ψ),γΩ(ψ)]∂Ω =
∫

∂Bρ

ıκψ ∂ρψ + ıκψ ∂ρψ dσρ = 2Re{
∫

∂Bρ

ıκψ ∂ρψ dσ}

=−
∫

∂Bρ

|∂ρψ − iκψ|2dσ +
∫

∂Bρ

|∂ρψ|2 +κ
2|ψ|2dσ

≥−
∫

∂Bρ

|∂ρψ − iκψ|2dσ .

Since this inequality must hold for any ρ > 0 large enough, we can pass to the limit ρ →+∞ and, by the
Sommerfeld radiation condition satisfied by ψ = GΩ

κ (u), we finally conclude that Im{[AΩ
κ (u),u]∂Ω}=

−ı[γΩ(ψ),γΩ(ψ)]∂Ω/2 ∈ [0,+∞).
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To conclude the proof, let us consider the case where Ω is bounded, and denote Ωc := Rd \Ω.
Because nnnΩc =−nnnΩ, we conclude that γΩc

=−θ ◦ γΩ
c , γΩc

c =−θ ◦ γΩ, and GΩc
κ = GΩ

κ ◦θ , and hence
AΩ

κ =−θ ◦AΩc
κ ◦θ . The domain Ωc is unbounded, so we can apply the first part of the present proof,

which finally yields

Im{[AΩ
κ (u),u]∂Ω}=− Im{[θ ◦AΩc

κ ◦θ(u),u]∂Ω}=+ Im{[AΩc

κ ◦θ(u),θ(u)]∂Ω} ≥ 0.

□
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