```
JOURNAL OF COMMUTATIVE ALGEBRA
Vol., No., YEAR
https://doi.org/jca.YEAR..PAGE
```


AN INCREASING NORMALIZED DEPTH FUNCTION

S. A. SEYED FAKHARI

Abstract

Let \mathbb{K} be a field and $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{K}. Assume that I is a squarefree monomial ideal of S. For every integer $k \geq 1$, we denote the k-th squarefree power of I by $I^{[k]}$. The normalized depth function of I is defined as $g_{I}(k)=$ $\operatorname{depth}\left(S / I^{[k]}\right)-\left(d_{k}-1\right)$, where d_{k} denotes the minimum degree of monomials belonging to $I^{[k]}$. Erey, Herzog, Hibi and Saeedi Madani conjectured that for any squarefree monomial ideal I, the function $g_{I}(k)$ is nonincreasing. In this short note, we provide a counterexample for this conjecture. Our example in fact shows that $g_{I}(2)-g_{I}(1)$ can be arbitrarily large.

1. Introduction

Let \mathbb{K} be a field and $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{K}. For any squarefree monomial ideal $I \subset S$ and for any positive integer k, the k-th squarefree power of I denoted by $I^{[k]}$ is the ideal generated by the squarefree monomials belonging to I^{k}. In [3], Erey, Herzog, Hibi and Saeedi Madani studied the depth of squarefree powers. They introduced the notion of normalized depth function as follows. Let $v(I)$ be the largest integer k with $I^{[k]} \neq 0$. For each integer $k=1,2, \ldots, v(I)$, we denote the minimum degree of monomials belonging to $I^{[k]}$ by d_{k}. The normalized depth function of I is the function $g_{I}:\{1,2, \ldots, v(I)\} \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$
g_{I}(k)=\operatorname{depth}\left(S / I^{[k]}\right)-\left(d_{k}-1\right) .
$$

The same authors conjectured that for any squarefree monomial ideal I, the function $g_{I}(k)$ is nonincreasing. This conjecture is known to be true in special cases (see e.g., [2], [3], [5]). However, in the next section, we provide a class of ideals disproving the conjecture. Our example indeed shows that the difference $g_{I}(2)-g_{I}(1)$ can be arbitrarily large.

2. An example

In Theorem 2.2, we introduce a class of ideals I showing that the normalized depth function $g_{I}(k)$ is not necessarily nonincreasing.

We recall that for any graph G with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$, its edge ideal is defined as

$$
I(G)=\left(x_{i} x_{j} \mid\{i, j\} \in E(G)\right) \subset S .
$$

Moreover, a graph G is said to be sequentially Cohen-Macaulay over \mathbb{K} if $S / I(G)$ is sequentially Cohen-Macaulay (one may look at [9, Chapter III] for the definition of sequentially CohenMacaulay modules). We say that G is a sequentially Cohen-Macaulay graph if it is sequentially

2020 Mathematics Subject Classification. Primary: 13C15, 05E40.
Key words and phrases. Squarefree power, Normalized depth function.

Cohen-Macaulay over any field \mathbb{K}. A subset U of $V(G)$ is called an independent subset of G if there are no edges among the vertices of U. We say that a subset $C \subseteq V(G)$ is a minimal vertex cover of G if, first, every edge of G is incident with a vertex in C and, second, there is no proper subset of C with the first property. Note that C is a minimal vertex cover if and only if $V(G) \backslash C$ is a maximal independent subset of G. Moreover, it is known by [7, Lemma 9.1.4] that every minimal prime ideal of $I(G)$ is of the form $\left(x_{i} \mid i \in C\right)$ where C is a minimal vertex cover of G. Since $I(G)$ is a radical ideal, it follows that the irredundant primary decomposition of $I(G)$ is given by

$$
I(G)=\bigcap\left(x_{i} \mid i \in C\right),
$$

where the intersection is taken over all minimal vertex covers C of G.
We first need the following simple lemma.
Lemma 2.1. Let T be a tree with n vertices. Then $\operatorname{depth}(S / I(T))$ is equal to the minimum size of a maximal independent subset of T.

Proof. It is well-known that any tree is a sequentially Cohen-Macaulay graph (see e.g., [6, Theorem 1.2]). Hence, it follows from [4, Theorem 4] (see also [8, Corollary 3.33]) that depth $(S / I(T))$ is equal to $n-h$, where h denotes the maximum height of an associated prime of $I(T)$. Thus, using the primary decomposition of $I(T)$ given above, we deduce that h is the maximum size of a minimal vertex cover of T. Therefore, $n-h$ is the minimum size of a maximal independent subset of T.

We are now ready to present our example.
Theorem 2.2. Let $n \geq 6$ be an integer and consider the polynomial ring $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. For each integer i with $1 \leq i \leq n-4$, set $u_{i}:=x_{1} x_{3} x_{i+4}$. Also, set

$$
u_{n-3}:=x_{1} x_{4} x_{5}, \quad u_{n-2}:=x_{2} x_{3} x_{4} \quad \text { and } \quad u_{n-1}:=x_{2} x_{3} x_{6}
$$

Let I be the squarefree monomial ideal generated by $u_{1}, u_{2}, \ldots, u_{n-1}$. Then
(i) $g_{I}(1)=1$; and
(ii) $g_{I}(2)=n-6$.

In particular, $g_{I}(2)=g_{I}(1)+n-7$.
Proof. (i) One can easily see that $\mathfrak{p}=\left(x_{4}, \ldots, x_{n}\right)$ is a minimal prime ideal of I. Thus,

$$
\begin{equation*}
\operatorname{depth}(S / I) \leq \operatorname{dim}(S / \mathfrak{p})=3 \tag{1}
\end{equation*}
$$

Consider the following short exact sequence.

$$
0 \longrightarrow \frac{S}{\left(I: x_{3}\right)} \longrightarrow \frac{S}{I} \longrightarrow \frac{S}{\left(I, x_{3}\right)} \longrightarrow 0
$$

It follows from depth lemma [1, Proposition 1.2.9] that

$$
\begin{equation*}
\operatorname{depth}(S / I) \geq \min \left\{\operatorname{depth}\left(S /\left(I: x_{3}\right)\right), \operatorname{depth}\left(S /\left(I, x_{3}\right)\right)\right\} \tag{2}
\end{equation*}
$$

Since $\left(I, x_{3}\right)=\left(u_{n-3}, x_{3}\right)$, we have

$$
\begin{equation*}
\operatorname{depth}\left(S /\left(I, x_{3}\right)\right)=n-2 \geq 4 . \tag{3}
\end{equation*}
$$

On the other hand, notice that

$$
\left(I: x_{3}\right)=\left(x_{2} x_{4}, x_{2} x_{6}\right)+\left(x_{1} x_{i+4} \mid 1 \leq i \leq n-4\right) .
$$

In particular, there is a tree T with vertex set $[n] \backslash\{3\}$ such that $\left(I: x_{3}\right)=I(T)$. It is easy to see that $\{1,2\}$ is a maximal independent set in T of minimum size. Since 3 is not a vertex of T, Lemma 2.1 implies that

$$
\begin{equation*}
\operatorname{depth}\left(S /\left(I: x_{3}\right)\right)=2+1=3 . \tag{4}
\end{equation*}
$$

We conclude from inequalities (2), (3) and (4) that depth $(S / I) \geq 3$. This inequality together with inequality (1) implies that depth $(S / I)=3$. Equivalently, $g_{I}(1)=1$.
(ii) It is obvious that $\left[^{[2]}\right.$ is the principal ideal generated by $u_{n-3} u_{n-1}$. Thus, $\operatorname{depth}\left(S / I^{[2]}\right)=$ $n-1$. In other words, $g_{I}(2)=n-6$.

Remark 2.3. Note that for the ideal in Theorem 2.2, we have $v(I)$. Thus, Theorem 2.2 shows that in general the function $g_{I}(k)$ can be an increasing function. However, we do not have any example of a graph G for which the function $g_{I(G)}(k)$ is not nonincreasing. So, the conjecture posed in [3] might be true for edge ideals.

Acknowledgment

The author would like to thank the referee for a careful reading of the paper and for valuable comments. This research is supported by the FAPA grant from the Universidad de los Andes.

Declarations

The author declares that there is no conflict of interest for this work.

References

[1] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1993.
[2] M. Crupi, A. Ficarra, E. Lax, Matchings, Squarefree Powers and Betti Splittings, preprint 2023.
[3] N. Erey, J. Herzog, T. Hibi, S. Saeedi Madani, The normalized depth function of squarefree powers, Collect. Math., to appear.
[4] S. Faridi, The projective dimension of sequentially Cohen-Macaulay monomial ideals, preprint 2013.
[5] A. Ficarra, J. Herzog, T. Hibi, Behaviour of the normalized depth function, Electron. J. Combin., 30 (2023), no. 2, Paper 2.31.
[6] C. A. Francisco, A. Van Tuyl, Sequentially Cohen-Macaulay edge ideals, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2327-2337.
[7] J. Herzog, T. Hibi, Monomial Ideals, Springer-Verlag, 2011.
[8] S. Morey, R. H. Villarreal, Edge ideals: Algebraic and combinatorial properties, Progress in commutative algebra 1, 85-126, de Gruyter, Berlin, 2012
[9] R. P. Stanley, Combinatorics and Commutative Algebra, Second Edition, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996.
S. A. Seyed Fakhari, Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia.

E-mail address: s.seyedfakhari@uniandes.edu.co

