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Abstract. The aim of this paper is to study conditions on an integral domain
D such that any D-algebra between the polynomial ring D[X] and the ring of
integer-valued polynomials Int(D) is (locally) free. These results are then extended
to several indeterminates.

Introduction

Throughout this paper, we let D be an integral domain with quotient field K.
The ring of integer-valued polynomials on D is defined as follows:

Int(D) := {f ∈ K[X] | f(D) ⊆ D}.
The ring Int(Z) and, more generally, the rings Int(OK) where OK denotes the ring
of integers of a number field K, were first studied by A. Ostrowski [16] and G.
Pólya [17] in 1919 and, after a century of research, has become a classical object
in commutative ring theory, number theory, and further areas of active research
in mathematics. Particularly, Cahen et al. in [6] asked whether Int(D) is always
(locally) free, or at least flat, as a D-module.

In a chronological overview of contributions concerning the module structure of
integer-valued polynomial rings, Pólya [17] established in 1919 that Int(D) is a free
D-module for all principal ideal domains D. Later, in 1971, Cahen & Chabert
showed in [4, consequence of Corollaires (3), page 303] that Int(D) is a faithfully flat
D-module for all Dedekind domains D. A year after, Cahen [3] proved that Int(D)
is projective for all Dedekind domains D, while the first author [7] established that
Int(D) is a free D-module with a regular basis, that is, a basis with exactly one
polynomial for each degree, for all unique factorization domains D. In 1996, Cahen
& Chabert noted in [5, Remark II.3.7] that the D-module Int(D) is free for all
Dedekind domains D. In 2009, Elliott [11] showed that Int(D) is locally free if D is a
PvMD such that Int(D)p = Int(Dp) for every prime ideal p of D. That includes the
case where D is a Krull domain or, more generally, a Krull-type domain. Finally, the
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second author showed in [15] that, for any locally essential domain D, the D-module
Int(D) is always flat, and it is locally free under a hypothesis of good behavior under
localization. Notably, the hypothesis of good behavior under localization plays a
crucial role in investigating the local freeness of Int(D) as a D-module. The reader
may consult the survey [19] for more information about the module structure of the
integer-valued polynomial rings.

The main goal of this paper is to investigate the (local) freeness of D-algebras
between D[X] and Int(D). In particular, we show that every algebra B over a
locally essential domain D such that D[X] ⊆ B ⊆ Int(D) is locally free without any
hypothesis of good behavior under localization.

Before starting the next section, it seems convenient to introduce some remarkable
D-algebras that lie between D[X] and Int(D).

◦ For every overring R of D, the ring IntR(D) of D-valued R-polynomials

IntR(D) := {f ∈ R[X] | f(D) ⊆ D}. [1]

◦ The rings Int{k}(D) of polynomials that are integer-valued together with their
divided differences up to the order k [2].

◦ The rings Int(k)(D) (resp., Int[k](D)) of polynomials that are integer-valued on D
together with their derivatives (resp., finite differences) of order up to k [5]. Also, the
rings Int(∞)(D) (resp., Int[∞](D)) of polynomials which are integer-valued together
with their derivatives (resp., finite differences) of all orders.

◦ The Bhargava ring over D at x where x is any element of D

Bx(D) := {f ∈ K[X] | ∀a ∈ D, f(xX + a) ∈ D[X]} [20].

◦ The ring of integer-valued polynomials on a torsion-free D-algebra A such that
A ∩K = D with coefficients in K defined by

IntK(A) := {f ∈ K[X] | f(A) ⊆ A} [14].

◦ In particular, the rings IntK(Mn(D)) and IntK(Tn(D)) defined by

IntK(Mn(D)) := {f ∈ K[X] | f(Mn(D)) ⊆ Mn(D)}

and IntK(Tn(D)) := {f ∈ K[X] | f(Tn(D)) ⊆ Tn(D)}

where Mn(D) denotes the ring of n × n matrices with coefficients in D and Tn(D)
the subring of Mn(D) formed by triangular matrices [13].
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1. Local study

We start by recalling some concepts and facts. So, let D be an integral domain
with quotient field K and let B be a D-algebra such that D[X] ⊆ B ⊆ K[X]. To
avoid the trivial case, we will assume that D ∕= K.

Following [17], a basis of the D-module B is said to be a regular basis if it is formed
by exactly one polynomial of each degree.

Recall that the characteristic ideal of index n of the D-algebra B, denoted by Jn(B),
is defined to be the set formed by 0 and the leading coefficients of the polynomials
in B of degree n. Note that D ⊆ Jn(B) ⊆ K, and Jn(B1) ⊆ Jn(B2) for any two
D-algebras B1 and B2 such that B1 ⊆ B2. Moreover, it is known that B admits a
regular basis if and only if the D-modules Jn(B) are principal fractional ideals of
D (cf. [5, Proposition II.1.4]). In particular, for any principal ideal domain D, the
D-algebra B has a regular basis. More details on these concepts can be found in [9].

Based on the observation made in [5, Remark II.2.14], we can state the following
lemma.

Lemma 1.1. Let D be a local domain whose maximal ideal is principal generated by
π and whose residue field is finite with cardinality q. Let a0, a1, . . . , aq−1 be a set of
representatives of D modulo πD, and consider the sequence a = {an}n!0 defined by

an = an0 + an1π + · · ·+ anrπ
r

when

n = n0 + n1q + · · ·+ nrq
r where 0 ! ni < q.

Then,

(1) for every x ∈ D, πwq(n) divides
!n−1

k=0(x− ak) where wq(n) =
"

k!1

#
n
qk

$
,

(2) the polynomials
%
X
0

&
a
= 1 and, for n > 0,

%
X
n

&
a
=

!n−1
k=0

X−ak
an−ak

form a regular
basis of Int(D),

(3) for every n " 0, Jn(Int(D)) = 1
πwq(n)D,

(4) for every f ∈ K[X] of degree n, we have:

f ∈ Int(D) ⇔ f(a0), f(a1), . . . , f(an) ∈ D.

We state now our first main result.

Theorem 1.2. If D is a local domain whose maximal ideal is principal generated by
π, then every D-algebra B such that D[X] ⊆ B ⊆ Int(D) admits a regular basis. More
precisely, for every n, the ideal Jn(B) is of the form π−snD where 0 ! sn ! wq(n)
when the residue field of D is finite with cardinality q.
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4 J.-L. CHABERT AND A. TAMOUSSIT

Proof. Let B be a D-algebra such that D[X] ⊆ B ⊆ Int(D). If the residue field of
D is infinite, then B = D[X] = Int(D), and the conclusion is trivial. Thus, we may
assume that the residue field of D is finite with cardinality q.

From the obvious containments D ⊆ Jn(B) ⊆ 1
πwq(n)D, we deduce that

πwq(n)D ⊆ πwq(n)Jn(B) ⊆ D.

Let us prove that the entire ideal a = πwq(n)Jn(B) which contains πwq(n) is of the
form πrD where 0 ! r ! wq(n). Clearly, if an integer s is such that πwq(n) ∈ πsD,
then s ! wq(n), and hence, there is a greatest non-negative integer r such that
a ⊆ πrD. Assume that a ∕= πrD and let x ∈ a = a ∩ πrD, then x = aπr for some
a ∈ D. If a is invertible, then πr ∈ a, and this implies a = πrD, contradicting our
assumption. Thus, for all x ∈ a, x = aπr with a ∈ πD, which means that x ∈ πr+1D,
this is a contradiction since a ∕⊆ πr+1D. Therefore, a = πrD.

Consequently, we have Jn(B) = 1
πwq(n)−rD and so Jn(B) is a principal fractional

ideal of D for all n. By [5, Proposition II.1.4], we deduce that B admits a regular
basis. □

In [5, Remark II.2.14], it is pointed out that: for any valuation domain V , the
V -module Int(V ) has a regular basis. This result has been recently generalized by
the second author in [18] to the case of IntR(V ), where R is an overring of V . As
an application of Theorem 1.2, we can now extend this result to any V -algebra B
satisfying V [X] ⊆ B ⊆ Int(V ).

Corollary 1.3. Let V be a valuation domain. Then every V -algebra B such that
V [X] ⊆ B ⊆ Int(V ) admits a regular basis.

Proof. Let m be the maximal ideal of V and let B be a V -algebra between V [X] and
Int(V ). If m is not principal or its residue field is infinite, then Int(V ) is just V [X]
by [5, Proposition I.3.16]. In this case, B = V [X] has a regular basis. On the other
hand, if m is principal and its residue field is finite, then Theorem 1.2 implies that
B has a regular basis. □
Remark 1.4. We could wonder whether the previous study in the local case, where
m = πD, may be extended, or not, to D-algebras contained in rings larger than
Int(D), such as rings of the form Int(E,D) = {f ∈ K[X] | f(E) ⊆ D} where E
is a subset of D. Obviously, a necessary condition is that Int(E,D) itself admits a
regular basis. In particular, E has to be infinite since else, if E = {a1, . . . , ar} then,
for every g ∈ K[X], g(X)

!r
j=1(X − aj) belongs to Int(E,D), which implies that

Jn(Int(E,D)) = K for all n ≥ r. On the other hand, the following assertion gives a
sufficient condition that allows to extend Theorem 1.2.

Proposition 1.5. If D is a local domain whose maximal m is principal and if E
is a subset of D which meets infinitely many distinct residue classes of D modulo
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p = ∩n≥0 m
n, then every D-algebra B such that D[X] ⊆ B ⊆ Int(E,D) admits a

regular basis.

Proof. Let π ∈ D be such that m = πD. The fact that E meets infinitely many
distinct residue classes of D modulo the prime ideal p = ∩n≥0 m

n implies that
Int(E,D) ⊆ Dp[X], but also that the characteristic subsets Jn(Int(E,D)) are all
of the form 1

πsD for some non-negative integer s. Indeed, let {an}n≥0 be an infinite
sequence of elements of E that are in distinct classes modulo p and, for each n,
consider the Vandermonde determinant V (a0, a1, . . . , an) =

!
0≤i<j≤n(aj − ai). As

V (a0, a1, . . . , an) /∈ p, there exists an integer r such that V (a0, a1, . . . , an) ∈ mr\mr+1,
and hence, πr Jn(Int(E,D)) ⊆ D by [5, Proposition I.3.1]. Thus, Jn(Int(E,D)) =
1
πsD and we may conclude as in Theorem 1.2. □

In the case where ∩n≥0 m
n = (0), the previous sufficient condition on E just means

that E is infinite which is a necessary condition by Remark 1.4. The next assertion
shows such an example.

Proposition 1.6 ([5, Corollary II.1.6]). Let D be a principal ideal domain and let E
be a subset of D. Every D-algebra B such that D[X] ⊆ B ⊆ Int(E,D) has a regular
basis if and only if E is infinite.

This is a global result that naturally leads us to our next section.

2. Globalization

Let us first recall some concepts.
A prime ideal p of D is called int prime if Int(D) ∕⊆ Dp[X] and it is called poly-

nomial prime if Int(D) ⊆ Dp[X]. If p is a polynomial prime we also have that
Int(D)p = Dp[X].

For a D-module B, we say that B is locally free if, for each maximal ideal m of D,
the Dm-module Bm is free. Moreover, if D[X] ⊆ B ⊆ K[X], we say that B has locally
a regular basis if, for each maximal ideal m of D, the Dm-algebra Bm has a regular
basis. From these definitions, we deduce immediately the following implications:

B has locally a regular basis ⇒ B is locally free ⇒ B is (faithfully) flat.

Proposition 2.1. Let D be an integral domain such that mDm is principal for every
int prime ideal m of D. Then every D-algebra B such that D[X] ⊆ B ⊆ Int(D) has
locally a regular basis and so it is locally free.

Proof. Let m be a maximal ideal of D and let B be a D-algebra between D[X] and
Int(D). We have then two possible cases:

Case 1: m is a polynomial prime of D. Since Int(D)m = Dm[X] and Dm[X] ⊆
Bm ⊆ Int(D)m, we deduce that Bm = Dm[X], and then Bm has a regular basis.
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6 J.-L. CHABERT AND A. TAMOUSSIT

Case 2: m is an int prime of D. By assumption, the maximal ideal of Dm is
principal and then it follows from Theorem 1.2 that Bm has a regular basis because
Dm[X] ⊆ Bm ⊆ Int(D)m ⊆ Int(Dm).

Therefore, in both cases, Bm has a regular basis, and thus the D-algebra B has
locally a regular basis, as wanted. □

Remark 2.2. Let D = Z[
√
−5] be the ring of integers of the number field Q(

√
−5).

In [5, Exercise II.30], it is shown that Int(D) is free as a D-module but has no regular
basis. However, Proposition 2.1 implies that Int(D) has locally a regular basis.

We say that D is an essential domain if there exists a set P consisting of prime
ideals of D such that the following two properties hold:

(1) D = ∩p∈PDp and
(2) Dp is a valuation domain for all p ∈ P ,

in which case we say that D is essential with defining family P . In addition, D is
called locally essential if the localization of D at any prime ideal is essential. Relevant
examples of locally essential domains include PvMDs and almost Krull domains (Re-
call that an almost Krull domain is an integral domain whose localizations at maximal
ideals are Krull domains, and a PvMD is an integral domain whose localizations at
maximal t-ideals are valuation domains).

Theorem 2.3. Let D be a locally essential domain. Then every D-algebra B such
that D[X] ⊆ B ⊆ Int(D) has locally a regular basis and hence it is locally free.

The assertion is an easy consequence of the following lemma together with Corol-
lary 1.3.

Lemma 2.4. If m is a maximal ideal of a locally essential domain D then, either
Dm is a valuation domain, or Int(Dm) = Dm[X].

Proof. Assume that Dm is not a valuation domain, then Dm = ∩p∈Spec(D), p⊊mDp since
Dm is an essential domain. Consequently,

Int(Dm) = Int(D,Dm) = ∩p⊊mInt(D,Dp) = ∩p⊊mInt(Dp) = ∩p⊊mDp[X] = Dm[X].

The two first equalities follows from [5, Corollary I.2.6] and the penultimate equality
follows from the fact that Int(D)p = Dp[X] for all primes p ∕= m since being non-
maximal these ideals have infinite residue rings. □

Proof of Theorem 2.3. Once more, for every maximal ideal m of D, we have the
containments Dm[X] ⊆ Bm ⊆ Int(D)m ⊆ Int(Dm). By Lemma 2.4, either Dm is
a valuation domain and we conclude with Corollary 1.3, or Int(Dm) = Dm[X] and
Bm = Dm[X]. □
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ON D-ALGEBRAS BETWEEN D[X] AND Int(D) 7

Remark 2.5. In [11, Proposition 3.5], [12, Theorem 1.2(a)], [15, Theorem 1], and [18,
Theorem 18(3)], the authors assumed that Int(D) behaves well under localization,
that is, Int(D)p = Int(Dp) for p in a specified subset of Spec(D), when dealing with
the local freeness of Int(D), or more generally IntR(D). However, Examples 6.2 and
6.5 of [8] provide almost Dedekind domains D with finite residue fields such that
Int(D) does not behave well under localization, i.e., Int(Dm) ∕= Int(D)m for some
maximal ideals m of D. Nonetheless, we see easily that the assumption of good
behavior under localization is not necessary for the cited results at the beginning of
this remark.

We next provide some illustrative examples.

Example 2.6. Let D = Z+ TQ[T ], where T is an indeterminate over Q, and let B
be a D-algebra between D[X] and Int(D). It is known that the integral domain D
is Prüfer, thus it follows from Theorem 2.3 that B is a locally free D-module.

Example 2.7. Let E be the ring of entire functions and set D := E +TES[T ], where
T is an indeterminate over E and S is the multiplicative subset generated by the
prime elements of E . Let B be a D-algebra between D[X] and Int(D).

According to [21, Example 2.6], D is a locally essential domain which is neither
PvMD nor almost Krull. By Theorem 2.3, B is locally free as a D-module .

3. Several indeterminates

The previous results may be extended to several indeterminates. Let n be a
fix positive integer and consider the ring of integer-valued polynomials on D in n
variables:

Int(Dn, D) = {f ∈ K[X1, . . . , Xn] | f(Dn) ⊆ D}.
More generally, for every subset E of Dn, we consider the ring

Int(E,D) = {f ∈ K[X1, . . . , Xn] | f(E) ⊆ D}.

Lemma 3.1. Let E be a subset of Dn of the form
!n

j=1 Ej where Ej ⊆ D. Assume
that, for 0 ≤ j ≤ n, Int(Ej, D) admits a regular basis {fj,k}k≥0. Then, the D-module
Int(E,D) admits the regular basis {

!n
j=1 fj,kj}k=(k1,...,kn)∈Nn .

Proof. The proof is very similar to that of [5, Proposition XI.1.13]. Since there
is one and only one polynomial of each multi-degree k in {

!n
j=1 fj,kj}(k1,...,kn)∈Nn ,

this is a basis of the K-vector space K[X1, . . . , Xn]. Let h ∈ Int(E,D) and write
h(X1, . . . , Xn) =

"
k=(k1,...,kn)∈Nn ck f1,k1(X1) · · · fn,kn(Xn) with ck’s belonging to K.

For simplicity we prove that the ck’s, that are uniquely determined, belong to D in
the case n = 2.
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8 J.-L. CHABERT AND A. TAMOUSSIT

Thus, with obvious notation, let h(X, Y ) =
"

k,l ck,lfk(X)gl(Y ) ∈ Int(E × F,D).

For every element a ∈ E, h(a, Y ) =
"

k,l ck,lfk(a)gl(Y ) ∈ Int(F, Y ), and hence, for
each l,

"
k ck,lfk(a) ∈ D, that is,

"
k ck,lfk(X) ∈ Int(E,D). Consequently, ck,l ∈ D

for all k and l. □

To study the case of subsets E of Dn that are not of the previous form, we consider
a total order on the monomials of K[X1, . . . , Xn], for instance, the lexicographic order
on Nn, that is, k < h if and only if there exists a smallest j such that kj ∕= hj and,
for this j, kj < hj.

Notation. For every D-algebra B such that D[X1, . . . , Xn] ⊆ B ⊆ Int(Dn, D) and
every k = (k1, . . . , kn) ∈ Nn, we denote by Jk(B) the fractional ideal formed by the
leading coefficients, with respect to the lexicographic order, of the polynomials of B
of multi-degree k.

For B = Int(Dn, D), we write Jk instead of Jk(Int(D
n, D)).

Lemma 3.2. Let B be a D-algebra such that D[X1, . . . , Xn] ⊆ B ⊆ K[X1, . . . , Xn].
The D-module B admits a regular basis if and only if Jk(B) is a principal fractional
ideal of D for all k = {k1, . . . , kn} ∈ Nn.

Proof. The necessary condition is obvious. Let us prove that it is enough. For each
k = (k1, . . . , kn) ∈ Nn, let fk ∈ B whose leading coefficient generates the principal
fractional ideal Jk(B). The fk’s form a basis of K[X1, . . . , Xn]. Thus, if h ∈ B, we
may write h =

"
k ckfk where the ck’s ∈ K are uniquely determined. Let k0 be the

largest multi-degree such that ck0 ∕= 0. By definition of Jk0
(B), ck0 ∈ D. Hence,

ck0fk0 ∈ B and f1 = f − ck0fk0 ∈ B also. Then, degf1 < degf . If f1 ∕= 0, we consider
the largest multi-degree of f1 such that ck1 ∕= 0. And so on, until we obtain 0. Then,
we have proved that all the ck’s are in D. □

The analog of Theorem 1.2 becomes:

Theorem 3.3. If D is a local domain whose maximal ideal is principal generated by
π with finite residue field of cardinality q, then

(1) Int(Dn, D) admits a regular basis. More precisely, for every k = {k1, . . . , kn},
the ideal Jk is equal to

!n
j=1 Jkj = π−

!n
j=1 wq(kj)D, and hence, is principal.

(2) Every D-algebra B such that D[X1, . . . , Xn] ⊆ B ⊆ Int(Dn, D) admits a
regular basis. More precisely, for every k = {k1, . . . , kn}, the ideal Jk(B) is
of the form π−

!n
j=1 sjD where 0 ≤ sj ≤ wq(kj), and hence, is principal.

Proof. The first assertion follow from Lemmas 1.1 and 3.1. For the second assertion
note first that D ⊆ Jk(B) ⊆ Jk, and hence, the last sentence of Theorem 3.3 follows
from the proof of Theorem 1.2. We may end with Lemma 3.2. □
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ON D-ALGEBRAS BETWEEN D[X] AND Int(D) 9

In the case where the residue field of the maximal ideal m of a local domain D is
infinite, we use the following result.

Proposition 3.4 ([5, Proposition XI.1.10]). If Int(D) is trivial, then Int(Dn, D) is
trivial for every n.

Corollary 3.5. If D is a local domain whose maximal ideal is principal, then every
D-algebra B such that D[X1, . . . , Xn] ⊆ B ⊆ Int(Dn, D) admits a regular basis.

Proof. This is a consequence of Theorem 3.3 and Proposition 3.4. □
Corollary 3.6. Let V be a valuation domain. Then every V -algebra B such that
V [X1, . . . , Xn] ⊆ B ⊆ Int(V n, V )) admits a regular basis.

Proof. This is a consequence of Corollary 3.5 if the maximal ideal of V is principal.
If not, we know that Int(D) = D[X], and hence, by Proposition 3.4, Int(Dn, D) =
D[X1, . . . , Xn]. Thus, for each maximal ideal m of D, we have:

Dm[X1, . . . , Xn] ⊆ B ⊆ Int(Dn, D)m ⊆ Int(Dn, Dm) = Dm[X1, . . . , Xn]. □
Thanks to Lemma 2.4, Corollary 3.6 leads by globalization to the following.

Theorem 3.7. Let D be a locally essential domain. Then every D-algebra B such
that D[X1, . . . , Xn] ⊆ B ⊆ Int(Dn, D) has locally a regular basis, and hence, is locally
free.

Remark 3.8. For any set of variables X, let:
Int(DX , D) := {f ∈ K[X] | f(DX) ⊆ D}.

As any fixed polynomial contains only finitely many variables, we can write:

Int(DX , D) =
'

Y⊆X
Y finite

Int(DY , D) (See [10, Lemma 2.3]).

Thus, assertions obtained for finitely many variables may be easily extended to in-
finitely many. For instance, for any set X of variables, if D is a local domain whose
maximal ideal is principal, Int(DX , D) admits a regular basis.
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