# COMPONENTWISE LINEARITY UNDER SQUARE-FREE GRÖBNER DEGENERATIONS 

HONGMIAO YU


#### Abstract

Using the recent results on square-free Gröbner degenerations by Conca and Varbaro, we prove that if a homogeneous ideal $I$ of a polynomial ring is such that its initial ideal in $\mathrm{n}_{<}(I)$ is square-free and $\beta_{0}(I)=\beta_{0}\left(\mathrm{in}_{<}(I)\right)$, then $I$ is a componentwise linear ideal if and only if in $(I)$ is a componentwise linear ideal. In particular, if furthermore one of $I$ and $\mathrm{in}_{<}(I)$ is componentwise linear, then their graded Betti numbers coincide.


## 1. Introduction

Throughout this paper, $R=K\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring in $n$ variables over a field $K$ with $\operatorname{deg}\left(X_{i}\right)=1$ for each $i=1, \ldots, n, \mathfrak{m}=\left(X_{1}, \ldots, X_{n}\right)$ is the unique homogeneous maximal ideal of $R$, and $I$ is a homogeneous ideal of $R$. We denote by $\beta_{i, j}(I)$ the $(i, j)$-th graded Betti number of $I$ and, for each $d \in \mathbb{Z}_{+}$, we denote by $I_{\langle d\rangle}$ the ideal generated by all homogeneous polynomials of degree $d$ belonging to $I$.

The notion of componentwise linearity was introduced by Herzog and Hibi [HH1] in 1999: We say that a homogeneous ideal $I \subseteq R$ has a d-linear resolution if $\beta_{i, i+j}(I)=0$ for all $i$ and for all $j \neq d$. We say that $I$ is componentwise linear if $I_{\langle d\rangle}$ has a $d$-linear resolution for all $d \in \mathbb{Z}$. In particular, if $I$ has a linear resolution, then it is componentwise linear.

In their paper published in 2020 on square-free Gröbner degenerations [CoV], Conca and Varbaro showed that if $I$ is a homogeneous ideal of a polynomial ring and if the initial ideal in $\mathrm{in}_{<}(I)$ is squarefree with respect to some term order $<$, then the Castelnuovo-Mumford regularity of $I$ and of $\mathrm{in}_{<}(I)$ ) coincide [CoV, Corollary 2.7]. A consequence of this result is the following: if $\mathrm{in}_{<}(I)$ is square-free, then $I$ has a $d$-linear resolution if and only if $\mathrm{in}_{<}(I)$ has a $d$-linear resolution. On the other hand, a consequence of Macaulay's Theorem [Ma] implies that $\mathrm{in}_{<}(I)$ and $I$ have the same Hilbert function (see [HH2, Corollary 6.1.5]). If both $I$ and $\mathrm{in}_{<}(I)$ have $d$-linear resolutions, using their Hilbert series:

$$
\begin{aligned}
\frac{\sum_{i=0}^{\operatorname{projidm}(I)}(-1)^{i} \sum_{j \in \mathbb{Z}} \beta_{i, j}(I) t^{j}}{(1-t)^{n}} & =\operatorname{HS}_{I}(t) \\
& =\operatorname{HS}_{\mathrm{in}_{<}(I)}(t) \\
& =\frac{\sum_{i=0}^{\operatorname{projim}\left(\mathrm{in}_{<}(I)\right)}(-1)^{i} \sum_{j \in \mathbb{Z}} \beta_{i, j}\left(\mathrm{in}_{<}(I)\right) t^{j}}{(1-t)^{n}}
\end{aligned}
$$

we have that the graded Betti numbers $\beta_{i . j}(I)=\beta_{i . j}\left(\mathrm{in}_{<}(I)\right)$ for all $i, j \in \mathbb{Z}$. Therefore, if in $\mathrm{in}_{<}(I)$ is square-free and $I$ has a linear resolution, then their graded Betti numbers coincide.

The author is supported by PRIN 2020355BBY "Squarefree Gröbner degenerations, special varieties and related topics", and is a member of GNSAGA (INdAM)..

2020 Mathematics Subject Classification.

Lemma 2.2. Let $I$ be a homogeneous ideal,$<$ a graded term order and let $d \in \mathbb{Z}_{+}$. Then following conditions are equivalent:
i) $\beta_{0}\left(I_{\langle d\rangle}\right)=\beta_{0}\left(\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)\right)$,
ii) $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle}$,
iii) $\mathrm{in}_{<}\left(I_{\leq d}\right)=\mathrm{in}_{<}(I)_{\leq d}$.

Proof. $i \Rightarrow$ ii) Since $\mathrm{in}_{<}(I)_{\langle d\rangle}$ is generated by all monomials of degree $d$ belonging to in ${ }_{<}(I)$, if $m$ is a generator of $\mathrm{in}_{<}(I)_{\langle d\rangle}$, then there exists $f \in I$ such that $\mathrm{in}_{<}(f)=m$ and the total degree $\operatorname{deg}(f)=d$. It follows that $m \in \mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$ as well. Therefore, we have $\mathrm{in}_{<}(I)_{\langle d\rangle} \subseteq \mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$. Moreover, since a Gröbner basis of $I_{\langle d\rangle}$ generates $I_{\langle d\rangle}$, and since the 0-th Betti number of an $R$ module refers to the minimal number of generators of that module, if $\beta_{0}\left(I_{\langle d\rangle}\right)=\beta_{0}\left(\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)\right)$, then $I_{\langle d\rangle}$ has a Gröbner basis (with respect to $<$ ) which is a minimal system of generators of $I_{\langle d\rangle}$. This implies that $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$ is generated by monomials of degree $d$. Hence $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=$ $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)_{\langle d\rangle} \subseteq \mathrm{in}_{<}(I)_{\langle d\rangle} \subseteq \mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$, that is, $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle}$.
$i i \Rightarrow i)$ Since in $_{<}\left(I_{\langle d\rangle}\right)=\operatorname{in}_{<}(I)_{\langle d\rangle}$, in $_{<}\left(I_{\langle d\rangle}\right)$ is generated by monomials of degree $d$ and so in ${ }_{<}\left(I_{\langle d\rangle}\right)=$ ([in $\left.\left.{ }_{<}\left(I_{\langle d\rangle}\right)\right]_{d}\right)$. Hence, using [BH, Proposition 1.3.1] and using the fact that $I_{\langle d\rangle}$ and $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$

1 | $\frac{2}{3}$ |
| :--- |
| $\frac{4}{5}$ |
| $\frac{6}{7}$ |
| $\frac{8}{9}$ |

have the same Hilbert function [HH2, Corollary 6.1.5], we obtain

$$
\begin{aligned}
\beta_{0}\left(\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)\right) & =\beta_{0}\left(\left[\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)\right]_{d}\right) \\
& =\operatorname{dim}_{K}\left(\left[\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)\right]_{d}\right) \\
& =\operatorname{HF}_{\text {in }}\left(I_{\langle d\rangle}\right) \\
& =\operatorname{HF}_{I_{\langle d\rangle}}(d) \\
& =\operatorname{dim}_{K}\left(\left[I_{\langle d\rangle}\right]_{d}\right) \\
& =\beta_{0}\left(I_{\langle d\rangle}\right) .
\end{aligned}
$$

$i i \Rightarrow i i i)$ Repeating a discussion similar to that about $\operatorname{in}_{<}(I)_{\langle d\rangle} \subseteq \operatorname{in}_{<}\left(I_{\langle d\rangle}\right)$ in the part $i \Rightarrow i i$, we have that the inclusion $\mathrm{in}_{<}(I)_{\leq d} \subseteq \mathrm{in}_{<}\left(I_{\leq d}\right)$ always holds. Now we assume that $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle}$ and we prove $\mathrm{in}_{<}\left(I_{\leq d}\right) \subseteq \mathrm{in}_{<}(I)_{\leq d}$. If $m \in \mathrm{in}_{<}\left(I_{\leq d}\right)$ is a monomial such that $\operatorname{deg}(m)=a$ with $a$ a positive integer, then there is $f \in I_{\leq d}$ such that $\mathrm{in}_{<}(f)=m$ and $\operatorname{deg}(f)=a$. Since $I_{\leq d}$ is a homogeneous ideal, by definition all homogeneous components of $f$ belong to $I_{\leq d}$. If $f$ is not homogeneous, then we can replace $f$ with its homogeneous component of degree $a$, namely $f_{a}$, since $\mathrm{in}_{<}\left(f_{a}\right)=\mathrm{in}_{<}(f)=m$. Hence we may assume that $f$ is a homogeneous polynomial. If $a \leq d$, then $m \in \operatorname{in}_{<}(I)_{\leq d}$ since $m \in \operatorname{in}_{<}(I)$ and $\operatorname{deg}(m) \leq d$. Now we assume that $a>d$. Since $\mathfrak{m} J_{\langle i\rangle} \subseteq I_{\langle i+1\rangle}$, for each $i<a$ we have $\left(I_{\langle i\rangle}\right)_{a}=\left(\mathfrak{m} I_{\langle i\rangle}\right)_{a} \subseteq\left(I_{\langle i+1\rangle}\right)_{a}$, and it follows that

$$
\left(I_{\langle 1\rangle}\right)_{a} \subseteq\left(I_{\langle 2\rangle}\right)_{a} \subseteq \ldots \subseteq\left(I_{\langle d\rangle}\right)_{a} .
$$

Hence $f \in I_{\langle d\rangle}$ and so $m \in \operatorname{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle} \subseteq \mathrm{in}_{<}(I)_{\leq d}$.
$i i i \Rightarrow i i)$ Since $I_{\langle d\rangle}$ is generated by polynomials of degree $d$ and $<$ is a graded term order, we have that $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$ is generated by monomials of degree greater than or equal to $d$. By our assumption $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right) \subseteq \mathrm{in}_{<}\left(I_{\leq d}\right)=\mathrm{in}_{<}(I)_{\leq d}$. It follows that $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$ is generated by monomials of degree $d$ and so in ${ }_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)_{\langle d\rangle} \subseteq \mathrm{in}_{<}(I)_{\langle d\rangle}$.

Lemma 2.3. Let $J$ be an ideal of $R$ generated by homogeneous polynomials of the same degree $a$. If $\beta_{0}(J)=\beta_{0}\left(\mathrm{in}_{<}(J)\right)$, then for each $d \in \mathbb{Z}_{+}$we have
i) $\mathrm{in}_{<}\left(\mathfrak{m}^{d} J\right)=\mathfrak{m}^{d} \mathrm{in}_{<}(J)$, and
ii) $\beta_{0}\left(\mathfrak{m}^{d} J\right)=\beta_{0}\left(\mathrm{in}_{<}\left(\mathfrak{m}^{d} J\right)\right)$.

Proof. Using again the facts that a Gröbner basis is a system of generators and the 0 -th Betti number refers to the minimal number of generators, we have that the assumption $\beta_{0}(J)=\beta_{0}\left(\mathrm{in}_{<}(J)\right)$ implies that $J$ has a Gröbner basis (with respect to $<$ ) which is a minimal system of generators of $J$, we denote this system by $\left\{h_{1}, \ldots, h_{r}\right\}$. So in ${ }_{<}(J)=\left(\operatorname{in}_{<}\left(h_{1}\right), \ldots, \mathrm{in}_{<}\left(h_{r}\right)\right)$ and $\operatorname{deg}\left(h_{i}\right)=a$ for all $i$.
i) It is clear that $\mathfrak{m}^{d} \mathrm{in}_{<}(J)=\mathrm{in}_{<}\left(\mathfrak{m}^{d}\right) \mathrm{in}_{<}(J) \subseteq \mathrm{in}_{<}\left(\mathfrak{m}^{d} J\right)$. We show that $\mathrm{in}_{<}\left(\mathfrak{m}^{d} J\right) \subseteq \mathfrak{m}^{d} \mathrm{in}_{<}(J)$. If $m \in \operatorname{in}_{<}\left(\mathfrak{m}^{d} J\right)$ is a monomial, then there exists $f \in \mathfrak{m}^{d} J$ such that $m=\mathrm{in}_{<}(f)$. Since $f \in \mathfrak{m}^{d} J \subseteq J, m=\mathrm{in}_{<}(f) \in\left(\mathrm{in}_{<}\left(h_{1}\right), \ldots, \mathrm{in}_{<}\left(h_{r}\right)\right)$. This implies that there exists a monomial $\mu \in R$ and there exists $i \in\{1, \ldots, r\}$ such that $m=\mu \mathrm{in}_{<}\left(h_{i}\right)$. Since $<$ is graded, $\operatorname{deg}(m) \geq d+a$, and so $\operatorname{deg}(\mu) \geq d$. It follows that $m=\mu \mathrm{in}_{<}\left(h_{i}\right) \in \mathfrak{m}^{d} \mathrm{in}_{<}(J)$.
ii) Since $\mathrm{in}_{<}\left(\mathfrak{m}^{d} J\right)=\mathfrak{m}^{d} \mathrm{in}_{<}(J)=\mathfrak{m}^{d}\left(\mathrm{in}_{<}\left(h_{1}\right), \ldots, \mathrm{in}_{<}\left(h_{r}\right)\right)$ and $\mathfrak{m}^{d} J$ is generated by monomials of degree $d+a$, we have $\mathrm{in}_{<}\left(\mathfrak{m}^{d} J\right)=\left(\left[\mathfrak{m}^{d} \mathrm{in}_{<}(J)\right]_{d+a}\right)$. Similarly, since $\mathfrak{m}^{d} J$ is generated by
homogeneous polynomials of degree $d+a$, we have $\mathfrak{m}^{d} J=\left(\left[\mathfrak{m}^{d} J\right]_{d+a}\right)$. Therefore,

$$
\begin{aligned}
& \beta_{0}\left(\operatorname{in}_{<}\left(\mathfrak{m}^{d} J\right)\right)=\operatorname{dim}_{K}\left(\left[\mathfrak{m}^{d} \mathrm{in}_{<}(J)\right]_{d+a}\right) \\
&=\operatorname{dim}_{K}\left(\left[\operatorname{in}_{<}(J)\right]_{d+a}\right) \\
&=\operatorname{HF}_{\mathrm{in}}^{<(J)} \\
&(d+a) \\
&=\operatorname{HF}_{J}(d+a) \\
&=\operatorname{dim}_{K}\left(J_{d+a}\right) \\
&=\operatorname{dim}_{K}\left(\left[\mathfrak{m}^{d} J\right]_{d+a}\right)=\beta_{0}\left(\mathfrak{m}^{d} J\right)
\end{aligned}
$$

Theorem 2.4. If $I$ is a componentwise linear ideal, $\mathrm{in}_{<}(I)$ is a square-free ideal and $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=$ $\mathrm{in}_{<}(I)_{\langle d\rangle}$ for all $d \in \mathbb{Z}_{+}$, then $\mathrm{in}_{<}(I)$ is a componentwise linear ideal. Moreover, we have $\beta_{i, i+j}\left(\mathrm{in}_{<}(I)\right)=$ $\beta_{i, i+j}(I)$ for all $i, j$.

Proof. We denote by $h=\operatorname{reg}(I):=\max \left\{j \mid \beta_{i, i+j}(I)=0\right.$ for some $\left.i\right\}$ the Castelnuovo-Mumford regularity of $I$. Since $\mathrm{in}_{<}(I)$ is a square-free ideal, we have $\operatorname{reg}(I)=\operatorname{reg}\left(\mathrm{in}_{<}(I)\right)$ by [CoV, Corollary 2.7]. It follows that $\beta_{0, i}\left(\mathrm{in}_{<}(I)\right)=0$ for all $i>h$. Furthermore, since $I$ is componentwise linear, $\beta_{0, h}\left(\mathrm{in}_{<}(I)\right) \geq \beta_{0, h}(I)>0$. Hence $h$ is the highest degree of a generator in a minimal system of generators of $\mathrm{in}_{<}(I)$. We show that $\mathrm{in}_{<}(I)$ is componentwise linear by induction on $h$.
$h=1: \mathrm{in}_{<}(I)$ has 1-linear resolution and so it is componentwise linear.
$h>1$ : Since in ${ }_{<}\left(I_{\langle d\rangle}\right)=\operatorname{in}_{<}(I)_{\langle d\rangle}$ for all $d \in \mathbb{Z}_{+}, \mathrm{in}_{<}\left(I_{\leq d}\right)=\mathrm{in}_{<}(I)_{\leq d}$ for all $d \in \mathbb{Z}_{+}$by Lemma 2.2 $i i \Rightarrow i i i)$. For each $d \in \mathbb{Z}_{+}$, since

$$
\left(I_{\leq h-1}\right)_{\leq d}= \begin{cases}I_{\leq d} & \text { if } d \leq h-1 \\ I_{\leq h-1} & \text { if } d>h-1\end{cases}
$$

we have

$$
\begin{aligned}
\operatorname{in}_{<}\left(\left(I_{\leq h-1}\right)_{\leq d}\right) & = \begin{cases}\operatorname{in}_{<}\left(I_{\leq d}\right) & \text { if } d \leq h-1 \\
\operatorname{in}_{<}\left(I_{\leq h-1}\right) & \text { if } d>h-1\end{cases} \\
& = \begin{cases}\operatorname{in}_{<}(I)_{\leq d} & \text { if } d \leq h-1, \\
\operatorname{in}_{<}(I)_{\leq h-1} & \text { if } d>h-1\end{cases} \\
& =\left(\operatorname{in}_{<}(I)_{\leq h-1}\right)_{\leq d} \\
& =\operatorname{in}_{<}\left(I_{\leq h-1}\right)_{\leq d} .
\end{aligned}
$$

Using again Lemma 2.2 iii $\Rightarrow$ ii) we have $\mathrm{in}_{<}\left(\left(I_{\leq h-1}\right)_{\langle d\rangle}\right)=\mathrm{in}_{<}\left(I_{\leq h-1}\right)_{\langle d\rangle}$ for all $d \in \mathbb{Z}_{+}$. Moreover, since $I$ is componentwise linear, $I_{\leq h-1}$ is componentwise linear and $\operatorname{reg}\left(I_{\leq h-1}\right)=$ $h-1$. Since $\mathrm{in}_{<}(I)$ is a square-free ideal, $\mathrm{in}_{<}\left(I_{\leq h-1}\right)=\mathrm{in}_{<}(I)_{\leq h-1}$ is also a square-free ideal and $\operatorname{reg}\left(\mathrm{in}_{<}\left(I_{\leq h-1}\right)\right)=h-1$ by [CoV, Corollary 2.7]. Hence $\mathrm{in}_{<}\left(I_{\leq h-1}\right)$ is componentwise linear by inductive hypothesis. It follows that

$$
\operatorname{in}_{<}\left(I_{\langle h-1\rangle}\right)=\operatorname{in}_{<}\left(\left(I_{\leq h-1}\right)_{\langle h-1\rangle}\right)=\operatorname{in}_{<}\left(I_{\leq h-1}\right)_{\langle h-1\rangle}
$$

has $(h-1)$-linear resolution and so $\min _{<}(I)_{\langle h-1\rangle}=\min _{<}\left(I_{\langle h-1\rangle}\right)$ has $h$-linear resolution by [HH2, Lemma 8.2.10].
Now we consider the following two short exact sequences

$$
0 \longrightarrow \min _{<}(I)_{\langle h-1\rangle} \longrightarrow \operatorname{in}_{<}(I)_{\langle h\rangle} \longrightarrow M_{h} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathrm{in}_{<}(I)_{\leq h-1} \longrightarrow \mathrm{in}_{<}(I) \longrightarrow M_{h} \longrightarrow 0,
$$

where $M_{h}=\operatorname{in}_{<}(I)_{\langle h\rangle} / \min _{<}(I)_{\langle h-1\rangle}$. For each $i, j$ they yield the following long exact sequences

$$
\begin{aligned}
\ldots \longrightarrow & \operatorname{Ext}_{R}^{i-1}\left(\mathfrak{m i n}_{<}(I)_{\langle h-1\rangle}, K\right)_{i+j} \longrightarrow \operatorname{Ext}_{R}^{i}\left(M_{h}, K\right)_{i+j} \longrightarrow \\
& \operatorname{Ext}_{R}^{i}\left(\operatorname{in}_{<}(I)_{\langle h\rangle}, K\right)_{i+j} \longrightarrow \operatorname{Ext}_{R}^{i}\left(\min _{<}(I)_{\langle h-1\rangle}, K\right)_{i+j} \longrightarrow \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
\cdots \longrightarrow & \operatorname{Ext}_{R}^{i-1}\left(\operatorname{in}_{<}(I)_{\leq h-1}, K\right)_{i+j} \longrightarrow \operatorname{Ext}_{R}^{i}\left(M_{h}, K\right)_{i+j} \longrightarrow \\
& \operatorname{Ext}_{R}^{i}\left(\operatorname{in}_{<}(I), K\right)_{i+j} \longrightarrow \operatorname{Ext}_{R}^{i}\left(\operatorname{in}_{<}(I)_{\leq h-1}, K\right)_{i+j} \longrightarrow \ldots .
\end{aligned}
$$

Since $\beta_{i-1, i+j}\left(\min _{<}(I)_{\langle h-1\rangle}\right)=\beta_{i, i+j}\left(\min _{<}(I)_{\langle h-1\rangle}\right)=0$ for each $j>h$,

$$
\operatorname{Ext}_{R}^{i-1}\left(\min _{<}(I)_{\langle h-1\rangle}, K\right)_{i+j}=\operatorname{Ext}_{R}^{i}\left(\mathfrak{m i n}_{<}(I)_{\langle h-1\rangle}, K\right)_{i+j}=0
$$

for each $j>h$. This implies

$$
\operatorname{Ext}_{R}^{i}\left(M_{h}, K\right)_{i+j} \cong \operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}, K\right)_{i+j}
$$

for each $i$ and for each $j>h$ by the first long exact sequence. Since $\operatorname{reg}\left(\mathrm{in}_{<}(I)_{\leq h-1}\right)=$ $\operatorname{reg}\left(\operatorname{in}_{<}\left(I_{\leq h-1}\right)\right)=h-1$, we have

$$
\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i-1}\left(\mathrm{in}_{<}(I)_{\leq h-1}, K\right)_{i+j}\right)=\beta_{i-1, i+j}\left(\mathrm{in}_{<}\left(I_{\leq h-1}\right)\right)=0
$$

and

$$
\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I)_{\leq h-1}, K\right)_{i+j}\right)=\beta_{i, i+j}\left(\mathrm{in}_{<}\left(I_{\leq h-1}\right)\right)=0
$$

for all $i$ and for all $j \geq h$, and so

$$
\operatorname{Ext}_{R}^{i}\left(M_{h}, K\right)_{i+j} \cong \operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I), K\right)_{i+j}
$$

for all $i$ and for all $j \geq h$ by the second long exact sequence. Therefore, for all $i$ and for all $j>h$,

$$
\operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}, K\right)_{i+j} \cong \operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I), K\right)_{i+j}
$$

We have

$$
\begin{aligned}
\beta_{i, i+j}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}\right) & =\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}, K\right)_{i+j}\right) \\
& =\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(\mathrm{in}_{<}(I), K\right)_{i+j}\right) \\
& =\beta_{i, i+j}\left(\operatorname{in}_{<}(I)\right) \\
& =0
\end{aligned}
$$

for all $i$ and for all $j>h=\operatorname{reg}\left(\mathrm{in}_{<}(I)\right)$. Since $\mathrm{in}_{<}(I)_{\langle h\rangle}$ is generated by generators of degree $h, \beta_{0, j}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}\right)=0$ for $j<h$, and so $\beta_{i, i+j}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}\right)=0$ for $j<h$. It follows that $\beta_{i, i+j}\left(\mathrm{in}_{<}(I)_{\langle h\rangle}\right)=0$ for all $j \neq h$.
By inductive hypothesis and by Lemma 2.2, $\mathrm{in}_{<}(I)_{\leq h-1}$ is componentwise linear. Hence for each $d \leq h-1$ and for each $j \neq d$,

$$
\beta_{i, i+j}\left(\mathrm{in}_{<}(I)_{\langle d\rangle}\right)=\beta_{i, i+j}\left(\left(\mathrm{in}_{<}(I)_{\leq h-1}\right)_{\langle d\rangle}\right)=0 .
$$

Therefore, $\beta_{i, i+j}\left(\mathrm{in}_{<}(I)_{\langle d\rangle}\right)=0$ for each $d$ and for each $j \neq d$, that is, $\mathrm{in}_{<}(I)$ is a componentwise linear ideal.
Furthermore, by Lemma $2.2 \mathrm{ii} \Rightarrow i)$ and Lemma $2.3 i)$ we get $\left.\mathrm{in}_{<}\left(\mathfrak{m} I_{\langle d\rangle}\right)=\mathfrak{m i n} \mathrm{n}_{<}\left(I_{\langle d\rangle}\right)=\mathfrak{m i n}\right)_{<}(I)_{\langle d\rangle}$ for each $d$. If both $I$ and $\mathrm{in}_{<}(I)$ are componentwise linear, then both $I_{\langle d\rangle}$ and $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle}$ have $d$-linear resolutions for each $d$. It follows that both $\mathfrak{m} L_{\langle d\rangle}$ and $\mathrm{in}_{<}\left(\mathfrak{m} I_{\langle d\rangle}\right)$ have $(d+1)$-linear resolutions for all $d$. Using their Hilbert series we obtain $\beta_{i, i+j}\left(I_{\langle d\rangle}\right)=\beta_{i, i+j}\left(\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)\right)$ and $\beta_{i, i+j}\left(\mathfrak{m} I_{\langle d\rangle}\right)=$ $\beta_{i, i+j}\left(\mathrm{in}_{<}\left(\mathfrak{m} I_{\langle d\rangle}\right)\right)$ for all $i, j$. Therefore, by [HH1, Proposition 1.3] we have that

$$
\begin{aligned}
\beta_{i, i+j}\left(\mathrm{in}_{<}(I)\right) & =\beta_{i}\left(\mathrm{in}_{<}(I)_{\langle j\rangle}\right)-\beta_{i}\left(\mathfrak{m i n}_{<}(I)_{\langle j-1\rangle}\right) \\
& =\beta_{i}\left(\mathrm{in}_{<}\left(I_{\langle j\rangle}\right)\right)-\beta_{i}\left(\mathrm{in}_{<}\left(\mathfrak{m} I_{\langle j-1\rangle}\right)\right) \\
& =\beta_{i}\left(I_{\langle j\rangle}\right)-\beta_{i}\left(\mathfrak{m} I_{\langle j-1\rangle}\right) \\
& =\beta_{i, i+j}(I)
\end{aligned}
$$

for each $i, j$.
Notice that the first part of the proof of $\left[\mathrm{CaV}\right.$, Theorem 5.4] showed that if $\beta_{0}(I)=\beta_{0}\left(\mathrm{in}_{<}(I)\right)$, then for each $d \in \mathbb{Z}_{+}$the initial ideal $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)$ is generated in degree $d$, and so $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle}$ for all $d \in \mathbb{Z}_{+}$. Therefore, the above theorem has the following consequence:
Corollary 2.5. Let $I$ be a homogeneous ideal, and let < be a graded term order such that $\mathrm{in}_{<}(I)$ is square-free and $\beta_{0}(I)=\beta_{0}\left(\mathrm{in}_{<}(I)\right)$. Then $I$ is a componentwise linear ideal if and only if $\mathrm{in}_{<}(I)$ is a componentwise linear ideal. In particular, if furthermore one of $I$ and $\mathrm{in}_{<}(I)$ is componentwise linear, we have $\beta_{i, i+j}\left(\mathrm{in}_{<}(I)\right)=\beta_{i, i+j}(I)$ for all $i, j$.
Proof. It follows by Theorem 2.4 and [CaV, Theorem 5.4].
Now we make a short discussion on the necessity of the assumptions of Theorem 2.4. First notice that, by the second part of Theorem 2.4 we obtain that whenever both $I$ and $\mathrm{in}_{<}(I)$ are componentwise linear and $I$ is minimally generated by a Gröbner basis (with respect to $<$ ), the graded Betti numbers of $I$ and of $\mathrm{in}_{<}(I)$ coincide, and it follows that they have the same Castelnuovo-Mumford regularity. However, if in ${ }_{<}(I)$ is not square-free, as indicated in [CoV], it can happen that $\operatorname{reg}(I)<\operatorname{reg}\left(\mathrm{in}_{<}(I)\right)$. In such instances, even if $I$ is componentwise linear and $\beta_{0}(I)=\beta_{0}\left(\mathrm{in}_{<}(I)\right)$, in $\mathrm{in}_{<}(I)$ cannot be a componentwise linear ideal. Thus, the assumption "in $\mathrm{n}_{<}(I)$ is a square-free ideal" is a necessary condition for our result. A counterexample is provided as follows.
Example 2.6. Let $X=\left(\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right)$ be a symmetric matrix and let $<$ be the graded reverse lexicographic order on $K[a, b, c, d, e, f]$ induced by $a>b>c>d>e>f$. The ideal $I$ generated by the

2-minors of $X$ is

$$
I=\left(-b^{2}+a d,-b c+a e,-c d+b e,-c^{2}+a f,-c e+b f,-e^{2}+d f\right) .
$$

Using Macaulay2 [M2] we compute the Betti table of $R / I$ :

|  | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 6 | 8 | 3 |

Notice that $I$ has 2-linear resolution so it is a componentwise linear ideal. Using again Macaulay2 [M2] we obtain that the initial ideal of $I$ with respect to $<$

$$
\mathrm{in}_{<}(I)=\left(e^{2}, c e, c d, c^{2}, b c, b^{2}\right)
$$

is not a square-free ideal. And according to the Betti table of $R / \mathrm{in}_{<}(I)$ :

|  | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 6 | 8 | 4 | 1 |
| 2 | 0 | 0 | 1 | 1 | 0 |

we have that $\mathrm{in}_{<}(I)$ is not a componentwise linear ideal even if $\beta_{0}(I)=\beta_{0}\left(\mathrm{in}_{<}(I)\right)=6$.
But the necessity of assumption " $\mathrm{in}_{<}\left(I_{\langle d\rangle}\right)=\mathrm{in}_{<}(I)_{\langle d\rangle}$ for all $d \in \mathbb{Z}_{+}$" is still an open question. Using Lemma 2.2 , this question can be reduced to the following one:

Question. If I is a componentwise linear ideal such that $\mathrm{in}_{<}(I)$ is square-free, can we obtain that $\mathrm{in}_{<}\left(I_{\leq h-1}\right)$ is also a square-free ideal with $h=\operatorname{reg}(I)$ ?

If the answer to the above question is true, then the necessity of this assumption can be denied.

## 3. Some Applications

The notion of " $N$-fiber-full up to $h$ modules", introduced and studied in [Yu], aims to generalize certain statements on square-free Gröbner degenerations by Conca and Varbaro [CoV]. In this section, we discuss consequences of our work in Section 2 specifically in the context of these modules. In particular, we improve a crucial result in [Yu] and show some applications to it.

In what follows, we suppose furthermore that $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$ is a weight vector and $N$ is a finitely generated $R[t]$-module such that it is a graded $K[t]$-module and it is flat over $K[t]$.

Let us recall that for each $f \in R$ there exists a unique (finite) subset of the set of monomials of $R$, denoted by $\operatorname{Supp}(f)$, such that

$$
f=\sum_{\mu \in \operatorname{Supp}(f)} a_{\mu} \mu \quad \text { with } \quad a_{\mu} \in K \backslash\{0\} .
$$

If $\mu=X^{u}=X_{1}^{u_{1}} \cdots \cdots X_{n}^{u_{n}}$ with $u=\left(u_{1}, \ldots, u_{n}\right)$ is a monomial of $R$, then we set $w(\mu)=w_{1} u_{1}+\cdots+$ $w_{n} u_{n}$. If $f=\sum_{\mu \in \operatorname{Supp}(f)} a_{\mu} \mu \in R, f \neq 0$, we set

$$
w(f)=\max \{w(\mu): \mu \in \operatorname{Supp}(f)\},
$$

and we call

$$
\begin{gathered}
\operatorname{init}_{w}(f)=\sum_{\substack{\mu \in \operatorname{Supp}(f) \\
w(\mu)=w(f)}} a_{\mu} \mu \\
\operatorname{hom}_{w}(f)=\sum_{\mu \in \operatorname{Supp}(f)} a_{\mu} \mu t^{w(f)-w(\mu)} \in R[t]
\end{gathered}
$$

the w-homogenization of $f$.
Given an ideal $J \subseteq R, \mathrm{in}_{w}(J)$ denotes the ideal of $R$ generated by init ${ }_{w}(f)$ with $f \in J$, and $\operatorname{hom}_{w}(J)$ denotes the ideal of $R[t]$ generated by $\operatorname{hom}_{w}(f)$ with $f \in J$.

Moreover, recall that $S=R[t] / \operatorname{hom}_{w}(J)$ is $N$-fiber-full up to an integer $h$ as an $R[t]$-module in the sense of [Yu, Definition 1.1] if, for any $m \in \mathbb{Z}_{+}$, the natural projection $S / t^{m} S \longrightarrow S / t S$ induces injective maps $\operatorname{Ext}_{R[t]}^{i}(S / t S, N) \longrightarrow \operatorname{Ext}_{R[t]}^{i}\left(S / t^{m} S, N\right)$ for all $i \leq h$. One result related to this notion is the following:

If $J$ is a homogeneous ideal and if $S=R[t] / \operatorname{hom}_{w}(J)$ is $N$-fiber full up to $h$ as an $R[t]$-module, then

$$
\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / J, N / t N)_{j}\right)=\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \mathrm{in}_{w}(J), N / t N\right)_{j}\right)
$$

for all $i \leq h-2$ and for all $j \in \mathbb{Z}$. (see [Yu, Corollary 3.2])
Actually the converse of the above result also holds and we have the following one:
Proposition 3.1. Let $J \subseteq R$ be an ideal. Then
i) $S=R[t] / \operatorname{hom}_{w}(J)$ is $N$-fiber-full up to $h$ as an $R[t]$-module if and only if $\operatorname{Ext}_{R[t]}^{i}(S, N)$ is a flat $K[t]$-module for $i \leq h-1$.
ii) If furthermore $J$ is homogeneous, then $S$ is $N$-fiber-full up to $h$ as an $R[t]$-module if and only if

$$
\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / J, N / t N)_{j}\right)=\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \mathrm{in}_{w}(J), N / t N\right)_{j}\right)
$$

for all $i \leq h-2$ and for all $j \in \mathbb{Z}$.
In particular,
iii) if $N=R[t]$, then $S$ is $R[t]$-fiber-full up to $h$ as an $R[t]$-module if and only if

$$
\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / J)_{j}\right)=\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}\left(R / \mathrm{in}_{w}(J)\right)_{j}\right)
$$

for all $i \geq n-h+2$ and for all $j \in \mathbb{Z}$.
iv) If $N=K[t]$, then $S$ is $K[t]$-fiber-full up to $h$ as an $R[t]$-module if and only if

$$
\beta_{i, j}(R / J)=\beta_{i, j}\left(R / \mathrm{in}_{w}(J)\right)
$$

for all $i \leq h-2$ and for all $j \in \mathbb{Z}$.
Proof. The part $i$ ) is a direct consequence of [ Yu , Theorem 2.6]. For the part $i i$ ) we only have to notice that the converse of some steps of the proof of [Yu, Corollary 3.2] are also true. More precisely, for the same reason discussed in [Yu, Corollary 3.2]: if $R=K\left[X_{1}, \ldots, X_{n}\right]$ is equipped with the graded structure $\operatorname{deg}\left(X_{i}\right)=g_{i}$, where $g_{1}, \ldots, g_{n}$ are positive integers, we provide a bi-graded structure on $R[t]$ by putting $\operatorname{deg}\left(X_{i}\right)=\left(g_{i}, w_{i}\right)$ and $\operatorname{deg}(t)=(0,1)$. Since $S=R[t] / \operatorname{hom}_{w}(J)$ and $\operatorname{Ext}_{R[t]}^{i}(S, N)$ are
finitely generated bi-graded $R[t]$-modules, using the structure theorem for finitely generated modules over a principal ideal domain, we have that for each $i, j \in \mathbb{Z}$,

$$
\bigoplus_{l \in \mathbb{Z}} \operatorname{Ext}_{R[t]}^{i}(S, N)_{(j, l)} \cong K[t]^{a_{i, j}} \oplus\left(\bigoplus_{k \in \mathbb{Z}_{+}}\left(K[t] /\left(t^{k}\right)\right)^{b_{i, j, k}}\right)
$$

for some natural numbers $a_{i, j}$ and $b_{i, j, k}$. And for every $i, j \in \mathbb{Z}$,

$$
\begin{gathered}
\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / J, N / t N)_{j}\right)=a_{i, j} \\
\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \operatorname{in}_{w}(J), N / t N\right)_{j}\right)=a_{i, j}+b_{i, j}+b_{i+1, j}
\end{gathered}
$$

where $b_{i, j}=\sum_{k \in \mathbb{Z}_{+}} b_{i, j, k}$.
Therefore, $S$ is $N$-fiber-full up to $h$ if and only if $\operatorname{Ext}_{R[t]}^{i}(S, N)$ is a flat $K[t]$-module for all $i \leq h-1$, if and only if $b_{i, j, k}=0$ for all $i \leq h-1$ and for all $j, k$, if and only if $b_{i, j}=b_{i+1, j}=0$ for all $i \leq h-2$ and for all $j$, if and only if $\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / J, N / t N)_{j}\right)=a_{i, j}=\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \mathrm{in}_{w}(J), N / t N\right)_{j}\right)$ for all $i \leq h-2$ and for all j .
In particular, if $N=R[t]$, then $N / t N \cong R$ and the part $i i i$ ) is obtained by using the local duality theorem for graded modules (see [BH, Theorem 3.6.19]).
If $N=K[t]$, then $N / t N \cong K$. By [BH, Proposition 1.3.1] we have $\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / J, K)_{j}\right)=\beta_{i, j}(R / J)$ and $\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \mathrm{in}_{w}(J), K\right)_{j}\right)=\beta_{i, j}\left(R / \mathrm{in}_{w}(J)\right)$ for all $i, j$.

Now considering the following fact:
Given an ideal $J \subseteq R$ and given a monomial order $<$ on $R$, there exists a suitable weight vector $w$ such that $\mathrm{in}_{w}(J)=\mathrm{in}_{<}(J)$. (see [HH2, Theorem 3.1.2] or [Va, Proposition 3.4])
we show that the above proposition and Corollary 2.5 imply the following result:
Proposition 3.2. Let $I$ be a homogeneous ideal and let $<$ be a graded term order. Assume that one of the following two conditions holds
i) $I$ is a componentwise linear ideal and $\mathrm{in}_{<}(I)$ is square-free,
ii) $\mathrm{in}_{<}(I)$ is a componentwise linear ideal.

Then $S=R[t] / \operatorname{hom}_{w}(I)$ is $K[t]$-fiber-full up to 3 if and only if $S$ is $K[t]$-fiber-full up to $h$ for all $h \in \mathbb{Z}$, where $w$ is a weight vector such that $\mathrm{in}_{w}(I)=\mathrm{in}_{<}(I)$.
Proof. One implication is trivial. On the other hand, if $S$ is $K[t]$-fiber-full up to 3, then $\beta_{1, j}(R / I)=$ $\beta_{1, j}\left(\mathrm{in}_{<}(I)\right)$ for all $j \in \mathbb{Z}$ by Proposition $\left.3.1 i v\right)$, and it follows that $\beta_{0}(I)=\beta_{0}\left(\mathrm{in}_{<}(I)\right)$. If one of the two conditions of our assumption holds, we obtain that $\beta_{i, i+j}(I)=\beta_{i, i+j}\left(\mathrm{in}_{<}(I)\right)$ for all $i, j$ by Corollary 2.5. This implies that $S$ is $K[t]$-fiber-full up to $h$ for all $h \in \mathbb{Z}$ by using again Proposition 3.1 iv).

## References

[BH] W. Bruns; J. Herzog. Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. xii+403 pp.
[CaV] Giulio Caviglia; Matteo Varbaro. Componentwise regularity ( $I$ ). Journal of Pure and Applied Algebra. Volume 219, Issue 1, January 2015, Pages 175-182.
[CoV] Aldo Conca; Matteo Varbaro. Square-free Gröbner Degenerations. Invent. Math. Volume 221, Issue 3, 1 September 2020, 713-730.
[Ma] Francis S. Macaulay. Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26 (1927), 531-555.
[M2] Daniel R.Grayson; Michael E.Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[HH1] Jürgen Herzog; Takayuki Hibi. Componentwise linear ideals. Nagoya Math. J. Vol. 153 (1999), 141-153.
[HH2] Jürgen Herzog; Takayuki Hibi. Monomial ideals, Graduate Texts in Mathematics 260, Springer-Verlag, 2011.
[Va] Matteo Varbaro. Gröbner degenerations. Recent Developments in Commutative Algebra: Levico Terme, Trento 2019. Lecture Notes in Mathematics, 2283. Springer International Publishing, 2021, pp. 59-80. MR4238474
[Yu] Hongmiao Yu. N-fiber-full modules. Journal of Pure and Applied Algebra. Volume 226, Issue 4, April 2022.
Dipartimento di Matematica, Universitá di Genova, Italy
Email address: yu@dima.unige.it

