Open Access
2018 The rate of convergence on Schrödinger operator
Zhenbin Cao, Dashan Fan, Meng Wang
Illinois J. Math. 62(1-4): 365-380 (2018). DOI: 10.1215/ijm/1552442667

Abstract

Recently, Du, Guth and Li showed that the Schrödinger operator $e^{it\Delta }$ satisfies $\lim_{t\rightarrow 0}e^{it\Delta }f=f$ almost everywhere for all $f\in H^{s}(\mathbb{R}^{2})$, provided that $s>1/3$. In this paper, we discuss the rate of convergence on $e^{it\Delta }(f)$ by assuming more regularity on $f$. At $n=2$, our result can be viewed as an application of the Du–Guth–Li theorem. We also address the same issue on the cases $n=1$ and $n>2$.

Citation

Download Citation

Zhenbin Cao. Dashan Fan. Meng Wang. "The rate of convergence on Schrödinger operator." Illinois J. Math. 62 (1-4) 365 - 380, 2018. https://doi.org/10.1215/ijm/1552442667

Information

Received: 5 December 2018; Revised: 5 December 2018; Published: 2018
First available in Project Euclid: 13 March 2019

zbMATH: 07036791
MathSciNet: MR3922421
Digital Object Identifier: 10.1215/ijm/1552442667

Subjects:
Primary: 42B25

Rights: Copyright © 2018 University of Illinois at Urbana-Champaign

Vol.62 • No. 1-4 • 2018
Back to Top