Abstract
We present a sharpened version of the Cohen–Gabber theorem for equicharacteristic, complete local domains $(A,\mathfrak{m},k)$ with algebraically closed residue field and dimension $d>0$. Namely, we show that for any prime number $p$, $\operatorname{Spec}A$ admits a dominant, finite map to $\operatorname{Spec}k[[X_{1},\ldots,X_{d}]]$ with generic degree relatively prime to $p$. Our result follows from Gabber’s original theorem, elementary Hilbert–Samuel multiplicity theory, and a “factorization” of the map induced on the Grothendieck group $\mathbf{G}_{0}(A)$ by the Koszul complex.
Citation
C. Skalit. "Koszul factorization and the Cohen–Gabber theorem." Illinois J. Math. 60 (3-4) 833 - 844, Fall and Winter 2016. https://doi.org/10.1215/ijm/1506067294
Information