Abstract
Li and Shanmugalingam showed that annularly quasiconvex metric spaces endowed with a doubling measure preserve the property of supporting a $p$-Poincaré inequality under the sphericalization and flattening procedures. Because natural examples such as the real line or a broad class of metric trees are not annularly quasiconvex, our aim in the present paper is to study, under weaker hypotheses on the metric space, the preservation of $p$-Poincaré inequalites under those conformal deformations for sufficiently large $p$. We propose the hypotheses used in a previous paper by the same authors, where the preservation of $\infty$-Poincaré inequality has been studied under the assumption of radially star-like quasiconvexity (for sphericalization) and meridian-like quasiconvexity (for flattening). To finish, using the sphericalization procedure, we exhibit an example of a Cheeger differentiability space whose blow up at a particular point is not a PI space.
Citation
Estibalitz Durand-Cartagena. Xining Li. "Preservation of $p$-Poincaré inequality for large $p$ under sphericalization and flattening." Illinois J. Math. 59 (4) 1043 - 1069, Winter 2015. https://doi.org/10.1215/ijm/1488186020
Information