Open Access
Winter 2015 Abstract convolution function algebras over homogeneous spaces of compact groups
Arash Ghaani Farashahi
Illinois J. Math. 59(4): 1025-1042 (Winter 2015). DOI: 10.1215/ijm/1488186019

Abstract

This paper presents a systematic study for structure of abstract Banach function $*$-algebras over homogeneous spaces of compact groups. Let $G$ be a compact group and $H$ be a closed subgroup of $G$. Let $\mu$ be the normalized $G$-invariant measure over the homogeneous space $G/H$ associated to the Weil’s formula and $1\leq p<\infty$. Then we introduce the notions of convolution and involution for the Banach function spaces $L^{p}(G/H,\mu)$.

Citation

Download Citation

Arash Ghaani Farashahi. "Abstract convolution function algebras over homogeneous spaces of compact groups." Illinois J. Math. 59 (4) 1025 - 1042, Winter 2015. https://doi.org/10.1215/ijm/1488186019

Information

Received: 9 April 2016; Revised: 7 July 2016; Published: Winter 2015
First available in Project Euclid: 27 February 2017

zbMATH: 1358.22001
MathSciNet: MR3628299
Digital Object Identifier: 10.1215/ijm/1488186019

Subjects:
Primary: 22C05 , 43A15 , 43A20 , 43A77 , 43A85 , 47A67

Rights: Copyright © 2015 University of Illinois at Urbana-Champaign

Vol.59 • No. 4 • Winter 2015
Back to Top