Open Access
Fall 2012 Lattice points in large convex planar domains of finite type
Jingwei Guo
Illinois J. Math. 56(3): 731-757 (Fall 2012). DOI: 10.1215/ijm/1391178546

Abstract

Let $\mathcal{B}$ be a compact convex planar domain with[4] smooth boundary of finite type and $\mathcal{B}_{\theta}$ its rotation by an angle $\theta$. We prove that for almost every $\theta\in[0,2\pi]$ the remainder $P_{\mathcal{B}_{\theta}}(t)$ is of order $O_{\theta}(t^{2/3-\zeta})$ with a positive number $\zeta$ independent of the domain.

Citation

Download Citation

Jingwei Guo. "Lattice points in large convex planar domains of finite type." Illinois J. Math. 56 (3) 731 - 757, Fall 2012. https://doi.org/10.1215/ijm/1391178546

Information

Published: Fall 2012
First available in Project Euclid: 31 January 2014

zbMATH: 1327.11065
MathSciNet: MR3161349
Digital Object Identifier: 10.1215/ijm/1391178546

Subjects:
Primary: 11L07 , 11P21
Secondary: 42B10

Rights: Copyright © 2012 University of Illinois at Urbana-Champaign

Vol.56 • No. 3 • Fall 2012
Back to Top