Open Access
Fall 2012 A refinement of a congruence result by van Hamme and Mortenson
Zhi-Wei Sun
Illinois J. Math. 56(3): 967-979 (Fall 2012). DOI: 10.1215/ijm/1391178558

Abstract

Let $p$ be an odd prime. In 2008, E. Mortenson proved van Hamme’s following conjecture:

\[\sum_{k=0}^{(p-1)/2}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}\equiv(-1)^{(p-1)/2}p\ \bigl(\operatorname{mod}p^{3}\bigr).\]

In this paper, we show further that

\begin{eqnarray*}\sum_{k=0}^{p-1}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}&\equiv&\sum_{k=0}^{(p-1)/2}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}\\[-2pt]&\equiv&(-1)^{(p-1)/2}p+p^{3}E_{p-3}\ \bigl(\operatorname{mod}p^{4}\bigr),\end{eqnarray*}

where $E_{0},E_{1},E_{2},\ldots$ are Euler numbers. We also prove that if $p>3$ then

\begin{eqnarray*}&&\sum_{k=0}^{(p-1)/2}\frac{20k+3}{(-2^{10})^{k}}\Bigl({\matrix{4k\\k,k,k,k}}\Bigr)\\&&\quad \equiv(-1)^{(p-1)/2}p\bigl(2^{p-1}+2-\bigl(2^{p-1}-1\bigr)^{2}\bigr)\ \bigl(\operatorname{mod}p^{4}\bigr).\end{eqnarray*}

Citation

Download Citation

Zhi-Wei Sun. "A refinement of a congruence result by van Hamme and Mortenson." Illinois J. Math. 56 (3) 967 - 979, Fall 2012. https://doi.org/10.1215/ijm/1391178558

Information

Published: Fall 2012
First available in Project Euclid: 31 January 2014

zbMATH: 1292.11040
MathSciNet: MR3161361
Digital Object Identifier: 10.1215/ijm/1391178558

Subjects:
Primary: 11B65
Secondary: 05A10 , 11A07 , 11B68

Rights: Copyright © 2012 University of Illinois at Urbana-Champaign

Vol.56 • No. 3 • Fall 2012
Back to Top