Open Access
Winter 2011 On the spectrum of Banach algebra-valued entire functions
J. P. Bannon, P. Cade, R. Yang
Illinois J. Math. 55(4): 1455-1465 (Winter 2011). DOI: 10.1215/ijm/1373636693

Abstract

In this paper, we investigate a notion of spectrum $\sigma(f)$ for Banach algebra-valued holomorphic functions on $\mathbb{C}^{n}$. We prove that the resolvent $\sigma^{c}(f)$ is a disjoint union of domains of holomorphy when $\mathcal{B}$ is a $C^{\ast}$-algebra or is reflexive as a Banach space. Further, we study the topology of the resolvent via consideration of the $\mathcal{B}$-valued Maurer–Cartan type $1$-form $f(z)^{-1}\,df(z)$. As an example, we explicitly compute the spectrum of a linear function associated with the tuple of standard unitary generators in a free group factor von Neumann algebra.

Citation

Download Citation

J. P. Bannon. P. Cade. R. Yang. "On the spectrum of Banach algebra-valued entire functions." Illinois J. Math. 55 (4) 1455 - 1465, Winter 2011. https://doi.org/10.1215/ijm/1373636693

Information

Published: Winter 2011
First available in Project Euclid: 12 July 2013

zbMATH: 1273.47008
MathSciNet: MR3082878
Digital Object Identifier: 10.1215/ijm/1373636693

Subjects:
Primary: 32A65
Secondary: 47A10

Rights: Copyright © 2011 University of Illinois at Urbana-Champaign

Vol.55 • No. 4 • Winter 2011
Back to Top