Open Access
Fall 2005 Homology lens spaces in topological 4-manifolds
Allan L. Edmonds
Illinois J. Math. 49(3): 827-837 (Fall 2005). DOI: 10.1215/ijm/1258138221

Abstract

For a closed $4$-manifold $X^4$ and closed $3$-manifold $M^3$ we investigate the smallest integer $n$ (perhaps $n=\infty$) such that $M^3$ embeds in $\#_nX^4$, the connected sum of $n$ copies of $X^4$. It is proven that any lens space (or homology lens space) embeds topologically locally flatly in $\#_2({\mathbf C}P^2\#\ \overline {{\mathbf C}P}^2)$, in $\#_4 S^2\times S^2$ and in $\#_8 \mathbf{C}P^2$.

Citation

Download Citation

Allan L. Edmonds. "Homology lens spaces in topological 4-manifolds." Illinois J. Math. 49 (3) 827 - 837, Fall 2005. https://doi.org/10.1215/ijm/1258138221

Information

Published: Fall 2005
First available in Project Euclid: 13 November 2009

zbMATH: 1086.57018
MathSciNet: MR2210261
Digital Object Identifier: 10.1215/ijm/1258138221

Subjects:
Primary: 57N13
Secondary: 57M35 , 57N10

Rights: Copyright © 2005 University of Illinois at Urbana-Champaign

Vol.49 • No. 3 • Fall 2005
Back to Top