Open Access
Summer 2005 o-minimal structures: low arity versus generation
Serge Randriambololona
Illinois J. Math. 49(2): 547-558 (Summer 2005). DOI: 10.1215/ijm/1258138034

Abstract

We show that an analogue of Hilbert's Thirteenth Problem fails in the real subanalytic setting. Namely we prove that, for any integer $n$, the $o$-minimal structure generated by restricted analytic functions in $n$ variables is strictly smaller than the structure of all global subanalytic sets, whereas these two structures define the same subsets in $\mathbb{R}^{n+1}$.

Citation

Download Citation

Serge Randriambololona. "o-minimal structures: low arity versus generation." Illinois J. Math. 49 (2) 547 - 558, Summer 2005. https://doi.org/10.1215/ijm/1258138034

Information

Published: Summer 2005
First available in Project Euclid: 13 November 2009

zbMATH: 1079.03027
MathSciNet: MR2164352
Digital Object Identifier: 10.1215/ijm/1258138034

Subjects:
Primary: 03C64
Secondary: 32B20

Rights: Copyright © 2005 University of Illinois at Urbana-Champaign

Vol.49 • No. 2 • Summer 2005
Back to Top