Open Access
Translator Disclaimer
2008 Equivariant covers for hyperbolic groups
Arthur C Bartels, Wolfgang Lück, Holger Reich
Geom. Topol. 12(3): 1799-1882 (2008). DOI: 10.2140/gt.2008.12.1799

Abstract

We prove an equivariant version of the fact that word-hyperbolic groups have finite asymptotic dimension. This is important in connection with our forthcoming proof of the Farrell–Jones conjecture for K(RG) for every word-hyperbolic group G and every coefficient ring R.

Citation

Download Citation

Arthur C Bartels. Wolfgang Lück. Holger Reich. "Equivariant covers for hyperbolic groups." Geom. Topol. 12 (3) 1799 - 1882, 2008. https://doi.org/10.2140/gt.2008.12.1799

Information

Received: 28 September 2006; Accepted: 7 February 2008; Published: 2008
First available in Project Euclid: 20 December 2017

zbMATH: 1185.20045
MathSciNet: MR2421141
Digital Object Identifier: 10.2140/gt.2008.12.1799

Subjects:
Primary: 20F65 , 20F67
Secondary: 37D40 , 57M07

Keywords: Asymptotic dimension , equivariant , flow spaces , hyperbolic groups

Rights: Copyright © 2008 Mathematical Sciences Publishers

JOURNAL ARTICLE
84 PAGES


SHARE
Vol.12 • No. 3 • 2008
MSP
Back to Top