Open Access
2010 Non standard functional limit laws for the increments of the compound empirical distribution function
Myriam Maumy, Davit Varron
Electron. J. Statist. 4: 1324-1344 (2010). DOI: 10.1214/09-EJS381

Abstract

Let $(Y_i,Z_i)_{i≥1}$ be a sequence of independent, identically distributed (i.i.d.) random vectors taking values in $ℝ^k×ℝ^d$, for some integers $k$ and $d$. Given $z∈ℝ^d$, we provide a nonstandard functional limit law for the sequence of functional increments of the compound empirical process, namely $$\mathbf{\Delta}_{n,\mathfrak{c}}(h_{n},z,\cdot):=\frac{1}{nh_{n}}\sum_{i=1}^{n}1_{[0,\cdot)}\Big(\frac{Z_{i}-z}{{h_{n}}^{1/d}}\Big)Y_{i}.$$ Provided that $nh_n∼c\log n$ as $n→∞$, we obtain, under some natural conditions on the conditional exponential moments of $Y\mid Z=z$, that $$\mathbf{\Delta}_{n,\mathfrak{c}}(h_{n},z,\cdot)\leadsto \Gamma \text{ almost surely},$$ where $↝$ denotes the clustering process under the sup norm on $[0,1)^d$. Here, $Γ$ is a compact set that is related to the large deviations of certain compound Poisson processes.

Citation

Download Citation

Myriam Maumy. Davit Varron. "Non standard functional limit laws for the increments of the compound empirical distribution function." Electron. J. Statist. 4 1324 - 1344, 2010. https://doi.org/10.1214/09-EJS381

Information

Published: 2010
First available in Project Euclid: 19 November 2010

zbMATH: 1329.60078
MathSciNet: MR2738535
Digital Object Identifier: 10.1214/09-EJS381

Keywords: Empirical processes , large deviations , Poisson process

Rights: Copyright © 2010 The Institute of Mathematical Statistics and the Bernoulli Society

Back to Top