Open Access
2008 On the asymptotic properties of the group lasso estimator for linear models
Yuval Nardi, Alessandro Rinaldo
Electron. J. Statist. 2: 605-633 (2008). DOI: 10.1214/08-EJS200

Abstract

We establish estimation and model selection consistency, prediction and estimation bounds and persistence for the group-lasso estimator and model selector proposed by Yuan and Lin (2006) for least squares problems when the covariates have a natural grouping structure. We consider the case of a fixed-dimensional parameter space with increasing sample size and the double asymptotic scenario where the model complexity changes with the sample size.

Citation

Download Citation

Yuval Nardi. Alessandro Rinaldo. "On the asymptotic properties of the group lasso estimator for linear models." Electron. J. Statist. 2 605 - 633, 2008. https://doi.org/10.1214/08-EJS200

Information

Published: 2008
First available in Project Euclid: 30 July 2008

zbMATH: 1320.62167
MathSciNet: MR2426104
Digital Object Identifier: 10.1214/08-EJS200

Subjects:
Primary: 62J05
Secondary: 62F12

Keywords: group-Lasso , least squares , Model selection , Oracle inequalities , Persistence , Sparsity

Rights: Copyright © 2008 The Institute of Mathematical Statistics and the Bernoulli Society

Back to Top