Open Access
2021 Minimax bounds for Besov classes in density estimation
Mathieu Sart
Author Affiliations +
Electron. J. Statist. 15(1): 3184-3216 (2021). DOI: 10.1214/21-EJS1856

Abstract

We study the problem of density estimation on [0,1] under Lp norm. We carry out a new piecewise polynomial estimator and prove that it is simultaneously (near)-minimax over a very wide range of Besov classes Bπ,α(R). In particular, we may deal with unbounded densities and shed light on the minimax rates of convergence when π<p and α(1π1p,1π].

Citation

Download Citation

Mathieu Sart. "Minimax bounds for Besov classes in density estimation." Electron. J. Statist. 15 (1) 3184 - 3216, 2021. https://doi.org/10.1214/21-EJS1856

Information

Received: 1 December 2020; Published: 2021
First available in Project Euclid: 22 June 2021

Digital Object Identifier: 10.1214/21-EJS1856

Keywords: Besov spaces , Density estimation , minimax risk

Vol.15 • No. 1 • 2021
Back to Top