Open Access
2021 Density deconvolution with non–standard error distributions: Rates of convergence and adaptive estimation
Alexander Goldenshluger, Taeho Kim
Author Affiliations +
Electron. J. Statist. 15(1): 3394-3427 (2021). DOI: 10.1214/21-EJS1863

Abstract

It is a standard assumption in the density deconvolution problem that the characteristic function of the measurement error distribution is non-zero on the real line. While this condition is assumed in the majority of existing works on the topic, there are many problem instances of interest where it is violated. In this paper we focus on non–standard settings where the characteristic function of the measurement errors has zeros, and study how zeros multiplicity affects the estimation accuracy. For a prototypical problem of this type we demonstrate that the best achievable estimation accuracy is determined by the multiplicity of zeros, the rate of decay of the error characteristic function, as well as by the smoothness and the tail behavior of the estimated density. We derive lower bounds on the minimax risk and develop optimal in the minimax sense estimators. In addition, we consider the problem of adaptive estimation and propose a data–driven estimator that automatically adapts to unknown smoothness and tail behavior of the density to be estimated.

Funding Statement

The research was supported by the Israel Science Foundation (ISF) grant.

Acknowledgments

We thank two anonymous reviewers and the Associate Editor for useful remarks.

Citation

Download Citation

Alexander Goldenshluger. Taeho Kim. "Density deconvolution with non–standard error distributions: Rates of convergence and adaptive estimation." Electron. J. Statist. 15 (1) 3394 - 3427, 2021. https://doi.org/10.1214/21-EJS1863

Information

Received: 1 January 2021; Published: 2021
First available in Project Euclid: 22 June 2021

Digital Object Identifier: 10.1214/21-EJS1863

Subjects:
Primary: 62G07 , 62G20

Keywords: Characteristic function , density deconvolution , Laplace transform , minimax risk , non-standard measurement error , zero multiplicity

Vol.15 • No. 1 • 2021
Back to Top