Consider an embedded hypersurface $M$ in $R^3$. For $\Phi_t$ a stochastic flow of differomorphisms on $R^3$ and $x \in M$, set $x_t = \Phi_t (x)$ and $M_t = \Phi_t (M)$. In this paper we will assume $\Phi_t$ is an isotropic (to be defined below) measure preserving flow and give an explicit descripton by SDE's of the evolution of the Gauss and mean curvatures, of $M_t$ at $x_t$. If $\lambda_1 (t)$ and $\lambda_2 (t)$ are the principal curvatures of $M_t$ at $x_t$ then the vector of mean curvature and Gauss curvature, $(\lambda_1 (t) + \lambda_2 (t)$, $\lambda_1 (t) \lambda_2 (t))$, is a recurrent diffusion. Neither curvature by itself is a diffusion. In a separate addendum we treat the case of $M$ an embedded codimension one submanifold of $R^n$. In this case, there are $n-1$ principal curvatures $\lambda_1 (t), \dotsc, \lambda_{n-1} (t)$. If $P_k, k=1,\dots,n-1$ are the elementary symmetric polynomials in $\lambda_1, \dotsc, \lambda_{n-1}$, then the vector $(P_1 (\lambda_1 (t), \dotsc, \lambda_{n-1} (t)), \dotsc, P_{n-1} (\lambda_1 (t), \dotsc, \lambda_{n-1} (t))$ is a diffusion and we compute the generator explicitly. Again no projection of this diffusion onto lower dimensions is a diffusion. Our geometric study of isotropic stochastic flows is a natural offshoot of earlier works by Baxendale and Harris (1986), LeJan (1985, 1991) and Harris (1981).

Electron. J. Probab.
3:
1-36
(1998).
DOI: 10.1214/EJP.v3-26

P. Baxendale, (1984), Brownian motions in the diffeomorphism Group. I, Compositio Math. 53, 19–50. 0547.58041P. Baxendale, (1984), Brownian motions in the diffeomorphism Group. I, Compositio Math. 53, 19–50. 0547.58041

P. Baxendale and T.Harris, (1986), Isotropic stochastic flows, Annals of Prob., Vol 14, 1155–1179. 0606.60014 10.1214/aop/1176992360 euclid.aop/1176992360P. Baxendale and T.Harris, (1986), Isotropic stochastic flows, Annals of Prob., Vol 14, 1155–1179. 0606.60014 10.1214/aop/1176992360 euclid.aop/1176992360

R. Bishop and S. Goldberg, (1980), Tensor Analysis on Manifolds, Dover, Toronto. 0218.53021R. Bishop and S. Goldberg, (1980), Tensor Analysis on Manifolds, Dover, Toronto. 0218.53021

Hardy, Littlewood, Polya, (1973), Inequalities, Cambridge University Press, Cambridge. 0010.10703Hardy, Littlewood, Polya, (1973), Inequalities, Cambridge University Press, Cambridge. 0010.10703

T. Harris, (1981), Brownian motions on the homeomorphisms of the plane, Annals of Prob. Vol. 9, 232–254. MR606986 0457.60013 10.1214/aop/1176994465 euclid.aop/1176994465T. Harris, (1981), Brownian motions on the homeomorphisms of the plane, Annals of Prob. Vol. 9, 232–254. MR606986 0457.60013 10.1214/aop/1176994465 euclid.aop/1176994465

N. Ikeda, S. Watanabe, (1989), Stochastic Differential Equations and Diffusion Processes, North-Holland, New York. 0684.60040N. Ikeda, S. Watanabe, (1989), Stochastic Differential Equations and Diffusion Processes, North-Holland, New York. 0684.60040

Y. LeJan, (1985), On isotropic Brownian motions, Zeit. für Wahr., 70, 609–620. MR807340 10.1007/BF00531870Y. LeJan, (1985), On isotropic Brownian motions, Zeit. für Wahr., 70, 609–620. MR807340 10.1007/BF00531870

Y. LeJan, (1991), Asymototic properties of isotropic Brownian flows, in Spatial Stochastic Processes, ed. K. Alexander, J. Watkins, Birkhäuser, Boston, 219–232.Y. LeJan, (1991), Asymototic properties of isotropic Brownian flows, in Spatial Stochastic Processes, ed. K. Alexander, J. Watkins, Birkhäuser, Boston, 219–232.