Translator Disclaimer
2021 A law of large numbers for interacting diffusions via a mild formulation
Florian Bechtold, Fabio Coppini
Author Affiliations +
Electron. J. Probab. 26: 1-27 (2021). DOI: 10.1214/21-EJP671

Abstract

Consider a system of n weakly interacting particles driven by independent Brownian motions. In many instances, it is well known that the empirical measure converges to the solution of a partial differential equation, usually called McKean-Vlasov or Fokker-Planck equation, as n tends to infinity. We propose a relatively new approach to show this convergence by directly studying the stochastic partial differential equation that the empirical measure satisfies for each fixed n. Under a suitable control on the noise term, which appears due to the finiteness of the system, we are able to prove that the stochastic perturbation goes to zero, showing that the limiting measure is a solution to the classical McKean-Vlasov equation. In contrast with known results, we do not require any independence or finite moment assumption on the initial condition, but the only weak convergence.

The evolution of the empirical measure is studied in a suitable class of Hilbert spaces where the noise term is controlled using two distinct but complementary techniques: rough paths theory and maximal inequalities for self-normalized processes.

Funding Statement

F.B. acknowledges the support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362. F.C. acknowledges the support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665850.

Acknowledgments

The authors are thankful to their respective supervisors Lorenzo Zambotti and Giambattista Giacomin for insightful discussions and advice. F.C. would like to thank Sylvain Wolf for his precious and tireless help with Sobolev spaces and fractional norms.

Citation

Download Citation

Florian Bechtold. Fabio Coppini. "A law of large numbers for interacting diffusions via a mild formulation." Electron. J. Probab. 26 1 - 27, 2021. https://doi.org/10.1214/21-EJP671

Information

Received: 17 November 2020; Accepted: 27 June 2021; Published: 2021
First available in Project Euclid: 16 July 2021

Digital Object Identifier: 10.1214/21-EJP671

Subjects:
Primary: 60F05, 60H15, 60H20, 60K35, 60L90

JOURNAL ARTICLE
27 PAGES


SHARE
Vol.26 • 2021
Back to Top