Open Access
2014 Random partitions in statistical mechanics
Nicholas Ercolani, Sabine Jansen, Daniel Ueltschi
Author Affiliations +
Electron. J. Probab. 19: 1-37 (2014). DOI: 10.1214/EJP.v19-3244

Abstract

We consider a family of distributions on spatial random partitions that provide a coupling between different models of interest: the ideal Bose gas; the zero-range process; particle clustering; and spatial permutations. These distributions are invariant for a "chain of Chinese restaurants" stochastic process. We obtain results for the distribution of the size of the largest component.

Citation

Download Citation

Nicholas Ercolani. Sabine Jansen. Daniel Ueltschi. "Random partitions in statistical mechanics." Electron. J. Probab. 19 1 - 37, 2014. https://doi.org/10.1214/EJP.v19-3244

Information

Accepted: 9 September 2014; Published: 2014
First available in Project Euclid: 4 June 2016

zbMATH: 1323.60128
MathSciNet: MR3263639
Digital Object Identifier: 10.1214/EJP.v19-3244

Subjects:
Primary: 60F05
Secondary: 60K35 , 82B05

Keywords: (inhomogeneous) zero-range process , Bose-Einstein condensation , chain of Chinese restaurants , heavy-tailed variables , Infinitely divisible laws , Spatial random partitions , Sums of independent random variables

Vol.19 • 2014
Back to Top