Open Access
2014 On the expectation of normalized Brownian functionals up to first hitting times
Romuald Elie, Mathieu Rosenbaum, Marc Yor
Author Affiliations +
Electron. J. Probab. 19: 1-23 (2014). DOI: 10.1214/EJP.v19-3049

Abstract

Let $B$ be a Brownian motion and $T_1$ its first hitting time of the level $1$. For $U$ a uniform random variable independent of $B$, we study in depth the distribution of $B_{UT_1}/\sqrt{T_1}$, that is the rescaled Brownian motion sampled at uniform time. In particular, we show that this variable is centered.

Citation

Download Citation

Romuald Elie. Mathieu Rosenbaum. Marc Yor. "On the expectation of normalized Brownian functionals up to first hitting times." Electron. J. Probab. 19 1 - 23, 2014. https://doi.org/10.1214/EJP.v19-3049

Information

Accepted: 29 March 2014; Published: 2014
First available in Project Euclid: 4 June 2016

zbMATH: 1291.60164
MathSciNet: MR3194736
Digital Object Identifier: 10.1214/EJP.v19-3049

Subjects:
Primary: 60J65
Secondary: 60G40 , 60J55

Keywords: Bessel process , Brownian meander , Brownian motion , Feynman-Kac formula , hitting times , random sampling , Ray-Knight theorem , scaling

Vol.19 • 2014
Back to Top