Open Access
2014 Local limits of conditioned Galton-Watson trees: the condensation case
Romain Abraham, Jean-François Delmas
Author Affiliations +
Electron. J. Probab. 19: 1-29 (2014). DOI: 10.1214/EJP.v19-3164

Abstract

We provide a complete picture of the local convergence of critical or subcritical Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set. The generic case, where the limit is a random tree with an infinite spine has been treated in a previous paper. We focus here on the non-generic case, where the limit is a random tree with a node with infinite out-degree. This case corresponds to the so-called condensation phenomenon.

Citation

Download Citation

Romain Abraham. Jean-François Delmas. "Local limits of conditioned Galton-Watson trees: the condensation case." Electron. J. Probab. 19 1 - 29, 2014. https://doi.org/10.1214/EJP.v19-3164

Information

Accepted: 27 June 2014; Published: 2014
First available in Project Euclid: 4 June 2016

zbMATH: 1304.60091
MathSciNet: MR3227065
Digital Object Identifier: 10.1214/EJP.v19-3164

Subjects:
Primary: 60J80
Secondary: 60B10

Keywords: branching process , Condensation , Galton-Watson , Non-extinction , Random tree

Vol.19 • 2014
Back to Top