Abstract
Let $\mathcal{T}_n$ be the cover time of two-dimensional discrete torus $\mathbb{Z}^2_n=\mathbb{Z}^2/n\mathbb{Z}^2$. We prove that $\mathbb{P}[\mathcal{T}_n\leq \frac{4}{\pi}\gamma n^2\ln^2 n]=\exp(-n^{2(1-\sqrt{\gamma})+o(1)})$ for $\gamma\in (0,1)$. One of the main methods used in the proofs is the decoupling of the walker's trace into independent excursions by means of soft local times.
Citation
Francis Comets. Christophe Gallesco. Serguei Popov. Marina Vachkovskaia. "On large deviations for the cover time of two-dimensional torus." Electron. J. Probab. 18 1 - 18, 2013. https://doi.org/10.1214/EJP.v18-2856
Information