Open Access
2013 Fixation for coarsening dynamics in 2D slabs
Michael Damron, Hana Kogan, Charles Newman, Vladas Sidoravicius
Author Affiliations +
Electron. J. Probab. 18: 1-20 (2013). DOI: 10.1214/EJP.v18-3059

Abstract

We study zero-temperature Ising Glauber Dynamics, on $2D$ slabs of thickness $k \geq 2$. In this model, $\pm 1$-valued spins at integer sites update according to majority vote dynamics with two opinions. We show that all spins reaches a final state (that is, the system fixates) for $k=2$ under free boundary conditions and for $k=2$ or $3$ under periodic boundary conditions. For thicker slabs there are sites that fixate and sites that do not.

Citation

Download Citation

Michael Damron. Hana Kogan. Charles Newman. Vladas Sidoravicius. "Fixation for coarsening dynamics in 2D slabs." Electron. J. Probab. 18 1 - 20, 2013. https://doi.org/10.1214/EJP.v18-3059

Information

Accepted: 17 December 2013; Published: 2013
First available in Project Euclid: 4 June 2016

zbMATH: 1284.82038
MathSciNet: MR3145052
Digital Object Identifier: 10.1214/EJP.v18-3059

Subjects:
Primary: 60K35
Secondary: 82B43

Keywords: coarsening , Glauber dynamics , Ising model

Vol.18 • 2013
Back to Top