Open Access
2013 Clustering and percolation of point processes
Bartlomiej Blaszczyszyn, Dhandapani Yogeshwaran
Author Affiliations +
Electron. J. Probab. 18: 1-20 (2013). DOI: 10.1214/EJP.v18-2468

Abstract

<p>We are interested in phase transitions in certain percolation models on point processes and their dependence on clustering properties of the point processes. We show that point processes with smaller void probabilities and factorial moment measures than the stationary Poisson point process exhibit non-trivial phase transition in the percolation of some coverage models based on level-sets of additive functionals of the point process. Examples of such point processes are determinantal point processes, some perturbed lattices and more generally, negatively associated point processes. Examples of such coverage models are k-coverage in the Boolean model (coverage by at least k grains), and SINR-coverage (coverage if the signal to-interference-and-noise ratio is large). In particular, we answer in affirmative the hypothesis of existence of phase transition in the percolation of k-faces in the Cech simplicial complex (called also clique percolation) on point processes which cluster less than the Poisson process. We also construct a Cox point process, which is "more clustered” than the Poisson point process and whose Boolean model percolates for arbitrarily small radius. This shows that clustering (at least, as detected by our specific tools) does not always “worsen” percolation, as well as that upper-bounding this cluster-ing by a Poisson process is a consequential assumption for the phase transition to hold.

Citation

Download Citation

Bartlomiej Blaszczyszyn. Dhandapani Yogeshwaran. "Clustering and percolation of point processes." Electron. J. Probab. 18 1 - 20, 2013. https://doi.org/10.1214/EJP.v18-2468

Information

Accepted: 31 July 2013; Published: 2013
First available in Project Euclid: 4 June 2016

zbMATH: 1291.60099
MathSciNet: MR3091718
Digital Object Identifier: 10.1214/EJP.v18-2468

Subjects:
Primary: 60E15 , 60G55 , 82B43
Secondary: 60D05 , 60G60 , 60K35

Keywords: Boolean model , determinantal , directionally convex ordering , level-sets , percolation , perturbed lattices , phase transition , point process , shot-noise fields , sub-Poisson point processes

Vol.18 • 2013
Back to Top