Translator Disclaimer
2013 An ergodic theorem for the frontier of branching Brownian motion
Louis-Pierre Arguin, Anton Bovier, Nicola Kistler
Author Affiliations +
Electron. J. Probab. 18: 1-25 (2013). DOI: 10.1214/EJP.v18-2082

Abstract

We prove a conjecture of Lalley and Sellke [Ann. Probab. 15 (1987)] asserting that the empirical (time-averaged) distribution function of the maximum of branching Brownian motion converges almost surely to a double exponential, or Gumbel, distribtion with a random shift. The method of proof is based on the decorrelation of the maximal displacements for appropriate time scales. A crucial input is the localization of the paths of particles close to the maximum that was previously established by the authors [Comm. Pure Appl. Math. 64 (2011)].

Citation

Download Citation

Louis-Pierre Arguin. Anton Bovier. Nicola Kistler. "An ergodic theorem for the frontier of branching Brownian motion." Electron. J. Probab. 18 1 - 25, 2013. https://doi.org/10.1214/EJP.v18-2082

Information

Accepted: 13 May 2013; Published: 2013
First available in Project Euclid: 4 June 2016

zbMATH: 1286.60082
MathSciNet: MR3065863
Digital Object Identifier: 10.1214/EJP.v18-2082

Subjects:
Primary: 60J80
Secondary: 60G70, 82B44

JOURNAL ARTICLE
25 PAGES


SHARE
Vol.18 • 2013
Back to Top