Open Access
Translator Disclaimer
2010 Weak Convergence for the Stochastic Heat Equation Driven by Gaussian White Noise
Xavier Bardina, Maria Jolis, Lluís Quer-Sardanyons
Author Affiliations +
Electron. J. Probab. 15: 1267-1295 (2010). DOI: 10.1214/EJP.v15-792


In this paper, we consider a quasi-linear stochastic heat equation with spatial dimension one, with Dirichlet boundary conditions and controlled by the space-time white noise. We formally replace the random perturbation by a family of noisy inputs depending on a parameter that approximate the white noise in some sense. Then, we provide sufficient conditions ensuring that the real-valued mild solution of the SPDE perturbed by this family of noises converges in law, in the space of continuous functions, to the solution of the white noise driven SPDE. Making use of a suitable continuous functional of the stochastic convolution term, we show that it suffices to tackle the linear problem. For this, we prove that the corresponding family of laws is tight and we identify the limit law by showing the convergence of the finite dimensional distributions. We have also considered two particular families of noises to that our result applies. The first one involves a Poisson process in the plane and has been motivated by a one-dimensional result of Stroock. The second one is constructed in terms of the kernels associated to the extension of Donsker's theorem to the plane.


Download Citation

Xavier Bardina. Maria Jolis. Lluís Quer-Sardanyons. "Weak Convergence for the Stochastic Heat Equation Driven by Gaussian White Noise." Electron. J. Probab. 15 1267 - 1295, 2010.


Accepted: 9 August 2010; Published: 2010
First available in Project Euclid: 1 June 2016

zbMATH: 1225.60100
MathSciNet: MR2678391
Digital Object Identifier: 10.1214/EJP.v15-792

Primary: 60B12
Secondary: 60G60, 60H15


Vol.15 • 2010
Back to Top