Open Access
Translator Disclaimer
2010 On the Shuffling Algorithm for Domino Tilings
Eric Nordenstam
Author Affiliations +
Electron. J. Probab. 15: 75-95 (2010). DOI: 10.1214/EJP.v15-730


We study the dynamics of a certain discrete model of interacting interlaced particles that comes from the so called shuffling algorithm for sampling a random tiling of an Aztec diamond. It turns out that the transition probabilities have a particularly convenient determinantal form. An analogous formula in a continuous setting has recently been obtained by Jon Warren studying certain model of interlacing Brownian motions which can be used to construct Dyson's non-intersecting Brownian motion. We conjecture that Warren's model can be recovered as a scaling limit of our discrete model and prove some partial results in this direction. As an application to one of these results we use it to rederive the known result that random tilings of an Aztec diamond, suitably rescaled near a turning point, converge to the GUE minor process.


Download Citation

Eric Nordenstam. "On the Shuffling Algorithm for Domino Tilings." Electron. J. Probab. 15 75 - 95, 2010.


Accepted: 12 January 2010; Published: 2010
First available in Project Euclid: 1 June 2016

zbMATH: 1193.60015
MathSciNet: MR2578383
Digital Object Identifier: 10.1214/EJP.v15-730

Primary: 60C05
Secondary: 60G50


Vol.15 • 2010
Back to Top