Open Access
2009 The growth exponent for planar loop-erased random walk
Robert Masson
Author Affiliations +
Electron. J. Probab. 14: 1012-1073 (2009). DOI: 10.1214/EJP.v14-651


We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any two dimensional discrete lattice.


Download Citation

Robert Masson. "The growth exponent for planar loop-erased random walk." Electron. J. Probab. 14 1012 - 1073, 2009.


Accepted: 17 May 2009; Published: 2009
First available in Project Euclid: 1 June 2016

zbMATH: 1191.60061
MathSciNet: MR2506124
Digital Object Identifier: 10.1214/EJP.v14-651

Primary: 60G50
Secondary: 60J65

Keywords: Loop-erased random walk , Random walk , Schramm-Loewner evolution

Vol.14 • 2009
Back to Top