Abstract
This paper extends the notion of the $\Lambda$-coalescent of Pitman (1999) to the spatial setting. The partition elements of the spatial $\Lambda$-coalescent migrate in a (finite) geographical space and may only coalesce if located at the same site of the space. We characterize the $\Lambda$-coalescents that come down from infinity, in an analogous way to Schweinsberg (2000). Surprisingly, all spatial coalescents that come down from infinity, also come down from infinity in a uniform way. This enables us to study space-time asymptotics of spatial $\Lambda$-coalescents on large tori in $d\geq 3$ dimensions. Some of our results generalize and strengthen the corresponding results in Greven et al. (2005) concerning the spatial Kingman coalescent.
Citation
Vlada Limic. Anja Sturm. "The spatial $\Lambda$-coalescent." Electron. J. Probab. 11 363 - 393, 2006. https://doi.org/10.1214/EJP.v11-319
Information