Abstract
Let $(S_0,S_1,\dots)$ be a supermartingale relative to a nondecreasing sequence of $\sigma$-algebras $(H_{\le0},H_{\le1},\dots)$, with $S_0\le0$ almost surely (a.s.) and differences $X_i:=S_i-S_{i-1}$. Suppose that for every $i=1,2,\dots$ there exist $H_{\le(i-1)}$-measurable r.v.'s $C_{i-1}$ and $D_{i-1}$ and a positive real number $s_i$ such that $C_{i-1}\le X_i\le D_{i-1}$ and $D_{i-1}-C_{i-1}\le 2 s_i$ a.s. Then for all real $t$ and natural $n$ and all functions $f$ satisfying certain convexity conditions $ E f(S_n)\le E f(sZ)$, where $f_t(x):=\max(0,x-t)^5$, $s:=\sqrt{s_1^2+\dots+s_n^2}$, and $Z\sim N(0,1)$. In particular, this implies $ P(S_n\ge x)\le c_{5,0}P(sZ\ge x)\quad\forall x\in R$, where $c_{5,0}=5!(e/5)^5=5.699\dots.$ Results for $\max_{0\le k\le n}S_k$ in place of $S_n$ and for concentration of measure also follow.
Citation
Iosif Pinelis. "On normal domination of (super)martingales." Electron. J. Probab. 11 1049 - 1070, 2006. https://doi.org/10.1214/EJP.v11-371
Information