Open Access
2006 Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks
Richard Bass, Xia Chen, Jay Rosen
Author Affiliations +
Electron. J. Probab. 11: 993-1030 (2006). DOI: 10.1214/EJP.v11-362

Abstract

We study moderate deviations for the renormalized self-intersection local time of planar random walks. We also prove laws of the iterated logarithm for such local times.

Citation

Download Citation

Richard Bass. Xia Chen. Jay Rosen. "Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks." Electron. J. Probab. 11 993 - 1030, 2006. https://doi.org/10.1214/EJP.v11-362

Information

Accepted: 27 October 2006; Published: 2006
First available in Project Euclid: 31 May 2016

zbMATH: 1112.60016
MathSciNet: MR2261059
Digital Object Identifier: 10.1214/EJP.v11-362

Subjects:
Primary: 60F10
Secondary: 60J55 , 60J65

Keywords: Brownian motion , Gagliardo-Nirenberg , Intersection local time , large deviations , law of the iterated logarith , Moderate deviations , planar random walks

Vol.11 • 2006
Back to Top