Open Access
2006 Gaussian Fluctuations in Complex Sample Covariance Matrices
Zhonggen Su
Author Affiliations +
Electron. J. Probab. 11: 1284-1320 (2006). DOI: 10.1214/EJP.v11-378

Abstract

Let $X=(X_{i,j})_{m\times n}, m\ge n$, be a complex Gaussian random matrix with mean zero and variance $\frac 1n$, let $S=X^*X$ be a sample covariance matrix. In this paper we are mainly interested in the limiting behavior of eigenvalues when $\frac mn\rightarrow \gamma\ge 1$ as $n\rightarrow\infty$. Under certain conditions on $k$, we prove the central limit theorem holds true for the $k$-th largest eigenvalues $\lambda_{(k)}$ as $k$ tends to infinity as $n\rightarrow\infty$. The proof is largely based on the Costin-Lebowitz-Soshnikov argument and the asymptotic estimates for the expectation and variance of the number of eigenvalues in an interval. The standard technique for the RH problem is used to compute the exact formula and asymptotic properties for the mean density of eigenvalues. As a by-product, we obtain a convergence speed of the mean density of eigenvalues to the Marchenko-Pastur distribution density under the condition $|\frac mn-\gamma|=O(\frac 1n)$.

Citation

Download Citation

Zhonggen Su. "Gaussian Fluctuations in Complex Sample Covariance Matrices." Electron. J. Probab. 11 1284 - 1320, 2006. https://doi.org/10.1214/EJP.v11-378

Information

Accepted: 17 December 2006; Published: 2006
First available in Project Euclid: 31 May 2016

zbMATH: 1129.15022
MathSciNet: MR2268545
Digital Object Identifier: 10.1214/EJP.v11-378

Subjects:
Primary: 15A52
Secondary: 60F05

Keywords: central limit theorem , Eigenvalues , RH problems , Sample covariance matrices , the Costin-Lebowitz-Soshnikov theorem

Vol.11 • 2006
Back to Top