Abstract
In this paper we consider fractional higher-order stochastic differential equations of the form \[ \left ( \mu + c_\alpha \frac{d^\alpha } {dt^\alpha } \right )^\beta X(t) = \mathcal{E} (t) , \quad \mu >0,\; \beta >0,\; \alpha \in (0,1) \cup \mathbb{N} \] where $\mathcal{E} (t)$ is a Gaussian white noise. We obtain explicitly the covariance functions and the spectral densities of the stochastic processes satisfying the above equations.
Citation
Mirko D’Ovidio. Enzo Orsingher. Ludmila Sakhno. "Spectral densities related to some fractional stochastic differential equations." Electron. Commun. Probab. 21 1 - 15, 2016. https://doi.org/10.1214/16-ECP4411
Information