Abstract
A one-dimensional, continuous, regular, and strong Markov process $X$ with state space $E$ hits any point $z \in E$ fast with positive probability. To wit, if ${\boldsymbol{\tau } }_z = \inf \{t \geq 0:X_{t} = z\}$, then $\textsf{P} _\xi ({\boldsymbol{\tau } }_z<\varepsilon )>0$ for all $\xi \in E$ and $\varepsilon >0$.
Citation
Cameron Bruggeman. Johannes Ruf. "A one-dimensional diffusion hits points fast." Electron. Commun. Probab. 21 1 - 7, 2016. https://doi.org/10.1214/16-ECP4544
Information