Abstract
We give a new, elementary proof of a key inequality used by Rudelson in the derivation of his well-known bound for random sums of rank-one operators. Our approach is based on Ahlswede and Winter's technique for proving operator Chernoff bounds. We also prove a concentration inequality for sums of random matrices of rank one with explicit constants.
Citation
Roberto Oliveira. "Sums of random Hermitian matrices and an inequality by Rudelson." Electron. Commun. Probab. 15 203 - 212, 2010. https://doi.org/10.1214/ECP.v15-1544
Information