Abstract
Benford's law states that for many random variables $X > 0$ its leading digit $D = D(X)$ satisfies approximately the equation $\mathbb{P}(D = d) = \log_{10}(1 + 1/d)$ for $d = 1,2,\ldots,9$. This phenomenon follows from another, maybe more intuitive fact, applied to $Y := \log_{10}X$: For many real random variables $Y$, the remainder $U := Y - \lfloor Y\rfloor$ is approximately uniformly distributed on $[0,1)$. The present paper provides new explicit bounds for the latter approximation in terms of the total variation of the density of $Y$ or some derivative of it. These bounds are an interesting and powerful alternative to Fourier methods. As a by-product we obtain explicit bounds for the approximation error in Benford's law.
Citation
Lutz Dümbgen. Christoph Leuenberger. "Explicit Bounds for the Approximation Error in Benford's Law." Electron. Commun. Probab. 13 99 - 112, 2008. https://doi.org/10.1214/ECP.v13-1358
Information