1 December 2021 Higher Hida theory and p-adic L-functions for GSp4
David Loeffler, Vincent Pilloni, Christopher Skinner, Sarah Livia Zerbes
Author Affiliations +
Duke Math. J. 170(18): 4033-4121 (1 December 2021). DOI: 10.1215/00127094-2021-0049


We use the “higher Hida theory” recently introduced by the second author to p-adically interpolate periods of nonholomorphic automorphic forms for GSp4, contributing to coherent cohomology of Siegel threefolds in positive degrees. We apply this new method to construct p-adic L-functions associated to the degree-4 (spin) L-function of automorphic representations of GSp4, and the degree-8 L-function of GSp4×GL2.


Download Citation

David Loeffler. Vincent Pilloni. Christopher Skinner. Sarah Livia Zerbes. "Higher Hida theory and p-adic L-functions for GSp4." Duke Math. J. 170 (18) 4033 - 4121, 1 December 2021. https://doi.org/10.1215/00127094-2021-0049


Received: 28 December 2019; Revised: 5 November 2020; Published: 1 December 2021
First available in Project Euclid: 22 November 2021

MathSciNet: MR4348233
zbMATH: 1497.11121
Digital Object Identifier: 10.1215/00127094-2021-0049

Primary: 11F46
Secondary: 11R23

Keywords: automorphic cohomology , p-adic L-functions , Siegel modular forms

Rights: Copyright © 2021 Duke University Press

Vol.170 • No. 18 • 1 December 2021
Back to Top