Abstract
Let , , be a uniformly rectifiable set of dimension . Then bounded harmonic functions in satisfy Carleson measure estimates and are -approximable. Our results may be viewed as generalized versions of the classical F. and M. Riesz theorem, since the estimates that we prove are equivalent, in more topologically friendly settings, to quantitative mutual absolute continuity of harmonic measure and surface measure.
Citation
Steve Hofmann. José María Martell. Svitlana Mayboroda. "Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions." Duke Math. J. 165 (12) 2331 - 2389, 1 September 2016. https://doi.org/10.1215/00127094-3477128
Information