15 February 2007 Symplectic aspects of Mather theory
Patrick Bernard
Author Affiliations +
Duke Math. J. 136(3): 401-420 (15 February 2007). DOI: 10.1215/S0012-7094-07-13631-7

Abstract

We prove that the Aubry and Mañé sets introduced by Mather in Lagrangian dynamics are symplectic invariants. In order to do so, we introduce a barrier on phase space. This is also an occasion to suggest an Aubry-Mather theory for nonconvex Hamiltonians

Résumé

On montre que les ensembles d'Aubry et de Mañé introduits par Mather en dynamique Lagrangienne sont des invariants symplectiques. On introduit pour ceci une barriere dans l'espace des phases. Ceci est aussi l'occasion d'ébaucher une théorie d'Aubry-Mather pour des Hamiltoniens non convexes

Citation

Download Citation

Patrick Bernard. "Symplectic aspects of Mather theory." Duke Math. J. 136 (3) 401 - 420, 15 February 2007. https://doi.org/10.1215/S0012-7094-07-13631-7

Information

Published: 15 February 2007
First available in Project Euclid: 29 January 2007

zbMATH: 1114.37036
MathSciNet: MR2309170
Digital Object Identifier: 10.1215/S0012-7094-07-13631-7

Subjects:
Primary: 37J50

Rights: Copyright © 2007 Duke University Press

Vol.136 • No. 3 • 15 February 2007
Back to Top