15 September 2006 The local lifting problem for dihedral groups
Irene I. Bouw, Stefan Wewers
Author Affiliations +
Duke Math. J. 134(3): 421-452 (15 September 2006). DOI: 10.1215/S0012-7094-06-13431-2

Abstract

Let G=Dp be the dihedral group of order 2p, where p is an odd prime. Let k be an algebraically closed field of characteristic p. We show that any action of G on the ring k[[y]] can be lifted to an action on R[[y]], where R is some complete discrete valuation ring with residue field k and fraction field of characteristic 0

Citation

Download Citation

Irene I. Bouw. Stefan Wewers. "The local lifting problem for dihedral groups." Duke Math. J. 134 (3) 421 - 452, 15 September 2006. https://doi.org/10.1215/S0012-7094-06-13431-2

Information

Published: 15 September 2006
First available in Project Euclid: 28 August 2006

zbMATH: 1108.14025
MathSciNet: MR2254623
Digital Object Identifier: 10.1215/S0012-7094-06-13431-2

Subjects:
Primary: 14H37
Secondary: 11G20 , 14D15

Rights: Copyright © 2006 Duke University Press

Vol.134 • No. 3 • 15 September 2006
Back to Top