15 February 2005 Naïve noncommutative blowing up
D. S. Keeler, D. Rogalski, J. T. Stafford
Duke Math. J. 126(3): 491-546 (15 February 2005). DOI: 10.1215/S0012-7094-04-12633-8

Abstract

Let B(X,$\mathscr{L}$,σ) be the twisted homogeneous coordinate ring of an irreducible variety X over an algebraically closed field k with dim X ≥ 2. Assume that cX and σ ∈ Aut(X) are in sufficiently general position. We show that if one follows the commutative prescription for blowing up X at c, but in this noncommutative setting, one obtains a noncommutative ring R = R(X,c,$\mathscr{L}$,σ) with surprising properties.

Citation

Download Citation

D. S. Keeler. D. Rogalski. J. T. Stafford. "Naïve noncommutative blowing up." Duke Math. J. 126 (3) 491 - 546, 15 February 2005. https://doi.org/10.1215/S0012-7094-04-12633-8

Information

Published: 15 February 2005
First available in Project Euclid: 11 February 2005

zbMATH: 1082.14003
MathSciNet: MR2120116
Digital Object Identifier: 10.1215/S0012-7094-04-12633-8

Subjects:
Primary: 14A22 , 16P40 , 16W50
Secondary: 16S38 , 18E15

Rights: Copyright © 2005 Duke University Press

Vol.126 • No. 3 • 15 February 2005
Back to Top