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Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes 585,

08007 Barcelona, Spain. E-mail: �lluisq@man.ub.es; ��sanz@mat.ub.es

We prove the existence and regularity of the density of the real-valued solution to a three-dimensional

stochastic wave equation. The noise is white in time and has a spatially homogeneous correlation

whose spectral measure � satisfies
Ð
R3 �(d�)(1 þ j�j2)�� , 1, for some � 2 (0, 1

2
). Our approach uses

the mild formulation of the equation given by means of Dalang’s extended version of Walsh’s

stochastic integration. We apply the tools of Malliavin calculus on the appropriate Gaussian space

related to the noise. An extension of Dalang’s stochastic integral to the Hilbert-valued setting is

needed. Let S3 be the fundamental solution to the three-dimensional wave equation. The assumption

on the noise yields upper and lower bounds for the integral
Ð t

0
ds
Ð
R3 �(d�)jF S3(s)(�)j2 and upper

bounds for
Ð t

0
ds
Ð
R3 �(d�)j�kF S3(s)(�)j2 in terms of powers of t. These estimates, together with a

suitable mollifying procedure for S3, are crucial in the analysis of the inverse of the Malliavin

variance.
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1. Introduction

In this paper we study the probability law of the real-valued solution to the stochastic wave

equation

@2

@ t2
� ˜3

� �
u(t, x) ¼ � (u(t, x)) _FF(t, x) þ b(u(t, x)), u(0, x) ¼ @u

@ t
(0, x) ¼ 0, (1)

where (t, x) 2 (0, T ] 3 R3, T . 0; ˜3 denotes the Laplacian operator on R3 and _FF is a

Gaussian noise white in time and correlated in space. Clearly, (1) is a particular case of a

class of stochastic partial differential equations (SPDEs) of the form

Lu(t, x) ¼ � (u(t, x)) _FF(t, x) þ b(u(t, x)), u(0, x) ¼ @u

@ t
(0, x) ¼ 0, (2)

(t, x) 2 (0, T ] 3 Rd , T . 0, where L is a second-order partial differential operator and the

fundamental solution of Lu ¼ 0 is a non-negative distribution with rapid decrease ¸.

Assume that the coefficients � and b are Lipschitz continuous real-valued functions and

F is a mean-zero L2(�, F , P)-valued Gaussian process indexed by the space of test

functions D(Rdþ1) with covariance functional J (j, ł) ¼
Ð
Rþ

ds
Ð
Rd ˆ(dx)(j(s) � ~łł(s))(x),
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where ˆ is a non-negative, non-negative definite tempered measure and ~łł(s, x) ¼ ł(s, �x).

Let � ¼ F�1ˆ, where F is the Fourier transform operator. Then

J (j, ł) ¼
ð
Rþ

ds

ð
Rd

�(d�)Fj(s)(�)Fł(s)(�):

In Dalang (1999) a suitable extension of Walsh’s stochastic integral with respect to martingale

measures is developed; with this tool a rigorous meaning is given to equation (2) in a mild form

and a theorem on existence and uniqueness of solution is proved. More precisely, there exists a

real-valued stochastic process u ¼ fu(t, x), (t, x) 2 [0, T ] 3 Rdg which satisfies the equation

u(t, x) ¼
ð t

0

ð
Rd

¸(t � s, x � y)� (u(s, y))M(ds, dy) þ
ð t

0

ds

ð
Rd

b(u(t � s, x � y))¸(s, dy),

(3)

where M denotes the martingale measure extension of the process F (see Dalang and

Frangos 1998).

Fix (t, x) 2 (0, T ] 3 R3. Our purpose is to find sufficient conditions ensuring that the law

of u(t, x) is absolutely continuous with respect to the Lebesgue measure on R and that the

density is a C1 function. The existence of the density has been studied in the companion

paper by Quer-Sardanyons and Sanz-Solé (2004).

Malliavin calculus provides a suitable tool for the analysis of these problems. The

Gaussian family to be considered here is described as follows. Let E be the inner-product

space consisting of functions j 2 S(Rd), the Schwartz space of rapidly decreasing C1 test

functions, endowed with the inner-product hj, łiE :¼
Ð
Rd �(d�)Fj(�)Fł(�). Let H denote

the completion of (E, h�, �iE) and set HT ¼ L2([0, T ]; H). Notice that H and HT may

contain distributions. The space HT is a real Hilbert separable space. For h 2 HT we set

W (h) ¼
Ð t

0

Ð
Rd h(s, x)M(ds, dx), where the stochastic integral is interpreted in Dalang’s

sense. Then fW (h), h 2 HTg is a Gaussian process and we can apply the Malliavin

calculus based on it (see, for instance, Nualart 1998).

In Theorem 1 of Quer-Sardanyons and Sanz-Solé (2004) we introduce an extension of

Dalang’s stochastic integral to integrators that are defined by stochastic integration of

Hilbert-valued predictable processes with respect to martingale measures. Owing to this

extension we have proved that the solution of (3) at any point (t, x) is once differentiable in

the Malliavin sense and that the derivative belongs to any L p and satisfies an SPDE.

We prove in Section 3 below that u(t, x) 2 D1 and give the equation satisfied by

DN u(t, x). The standard approach to this problem (see, for instance, Millet and Sanz-Solé

1999; Márquez-Carreras et al. 2001) cannot be used here. In fact, the difference of two

positive distributions is not necessarily positive; but positivity is one of the requirements in

the construction of Dalang’s integral and, especially for obtaining L p bounds, a useful tool

for proving L p convergences. We circumvent this difficulty as follows. We consider a

sequence of regularized processes un(t, x), n > 1, obtained by convolution of the

fundamental solution ¸ with an approximation of the identity. The L p-limit of un(t, x)

as n tends to infinity is u(t, x), as is proved in Proposition 1 of Quer-Sardanyons and Sanz-

Solé (2003); in addition, un(t, x) 2 D1. Then, since the iterated Malliavin derivative
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operator DN is closed, it suffices to prove that the sequence DN un(t, x) converges in the

topology of L p(�; H�N
T ), for any N > 1, p 2 [1, 1). This can be achieved by first proving

that the sequence is bounded in any L p and then proving the convergence of order 2, which

can be checked with techniques related to the isometry property of the stochastic integral.

The results of Section 4 concern the particular case of equation (1), the stochastic wave

equation in spatial dimension 3. We prove that the inverse of the Malliavin variance of

u(t, x) belongs to any L p(�) for all fixed (t, x) 2 (0, T ] 3 R3. Then, by the results of

Section 3, we conclude that the law of u(t, x) has a smooth density.

The existence of moments of any order of the inverse of the Malliavin variance is assured

by the integrability in a neighbourhood of zero of the function

� ! ��(1þ p) PfkDu(t, x)k2
HT

, �g,

for any p 2 [0, 1). Hence, the main issue is to obtain the size in � of the factor

PfkDu(t, x)k2
HT

, �g. The difficulties come from the fact that the fundamental solution of

the wave equation is a Schwartz distribution. The natural idea is to smooth that distribution,

as we did to study the differentiability. This time we introduce a regularization kernel which

depends on � in a suitable way so that the error in this approximation is a function of � as

well. This technique is complemented with upper and lower bounds of integrals involving the

Fourier transform of the fundamental solution of the wave equation, which have also played a

crucial role in the arguments of Quer-Sardanyons and Sanz-Solé (2004); these are presented

in the Appendix.

All positive real constants are denoted by C, regardless of their values. In the following

section we give some basic notation for Malliavin calculus used throughout the paper. We

refer the reader to Nualart (1995) for a complete account of notions related to this topic.

2. Preliminaries

Consider the stochastic equation (3) as described in the Introduction. Assume that the

following set of hypotheses is satisfied:

Hypothesis D. Let ¸ be the fundamental solution of Lu ¼ 0. Then ¸(t) is a non-negative

distribution with rapid decrease such thatðT

0

dt

ð
Rd

�(d�)jF¸(t)(�)j2 , 1 (4)

and

lim
h#0

ðT

0

dt

ð
Rd

�(d�) sup
t,r, tþh

jF (¸(r) �¸(t))(�)j2 þ 0:

Moreover, ¸ is a non-negative measure on Rþ 3 Rd of the form ¸(t, dy)dt such that

sup0< t<T ¸(t, Rd) < CT , 1.
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Then Theorem 5 in Dalang (1999) establishes the existence of a unique progressively

measurable process fu(t, x), (t, x) 2 [0, T ] 3 Rdg such that (3) holds; in addition,

sup( t,x)2[0,T]3Rd E(ju(t, x)j p) , 1, for any p 2 [1, 1), and this has a spatial stationary

covariance function. This process will be called the solution of (3).

We denote by D the Malliavin derivative operator defined in the framework of the

Gaussian space described in the Introduction. Fix any positive integer N ; then DN denotes

the Nth iteration of D. For any random variable X , the N th derivative, if it exists, defines a

random vector with values in H�N
T . For any p 2 [1, 1) we denote by DN , p the Sobolev–

Watanabe space of random variables X such that

kXk p
N , p :¼ E(jX j p) þ

XN

j¼1

E kD j Xk p

H� j

T

� �
, þ1:

Let A be a separable real Hilbert space and K ¼ fK(s, z), (s, z) 2 [0, T ] 3 Rdg be an

A-valued predictable process. Set K j(s, z) ¼ hK(s, z), e jiA, where fe j, j > 0g is a

complete orthonormal system of A. Assume that:

1. sup(s,z)2[0,T]3Rd E(kK(s, z)k2
A) , 1;

2. for all j > 0, s 2 [0, T ], x, y 2 Rd ,

E(K j(s, x)K j(s, y)) ¼ E(K j(s, 0)K j(s, y � x)):

For any j > 0, set

M K j

t (A) ¼
ð t

0

ð
A

K j(s, z)M(ds, dz), t 2 [0, T ], A 2 Bb(Rd):

The process M K
t (A) ¼

P
j>0 M K j

t (A)e j defines an A-valued martingale measure.

Set GK
j (s, z) ¼ E(K j(s, 0)K j(s, z)). The measure

ˆK
s (dz) ¼

X
j>0

GK
j (s, z)ˆ(dz)

is non-negative and tempered. Let �K
s be the non-negative tempered measure such that

F�1ˆK
s ¼ �K

s .

The next result reproduces Theorem 1 in Quer-Sardanyons and Sanz-Solé (2004). It is an

extension to the Hilbert setting of Theorems 2 and 5 in Dalang (1999).

Proposition 1. Let t ! S(t) be a deterministic function with values in the space of non-

negative distributions with rapid decrease satisfying (4). Then the indefinite stochastic

integral of S with respect to the martingale measure M K, (S � M K ) t, t 2 [0, T ], exists as an

A-valued process and satisfies

E(k(S � M K ) tk2
A) ¼

ð t

0

ds

ð
Rd

�K
s (d�)jF S(s)(�)j2:

Moreover, for any p 2 [2, 1), t 2 [0, T ],
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E(k(S � M K ) tk p

A) < Ct

ð t

0

ds sup
x2Rd

E(kK(s, x)k p

A)

ð
Rd

�(d�)jF S(s)(�)j2, (5)

with Ct ¼ (
Ð t

0
ds
Ð
Rd �(d�)jF S(s)(�)j2) p=2�1.

We shall use the notation

kSk2
0,K ¼

ðT

0

ds

ð
Rd

�K
s (d�)jF S(s)(�)j2:

In this paper we will apply this result to A :¼ H� j
T and to H� j

T -valued stochastic processes

involving Malliavin derivatives up to order j > 1.

3. Malliavin differentiability of spatially homogeneous SPDEs

Suppose that the coefficients of equation (3) are C1 functions with bounded Lipschitz

continuous derivatives. We have proved in Quer-Sardanyons and Sanz-Solé (2004) that, for

any fixed t > 0 and x 2 Rd, u(t, x) belongs to the space D1, p, for all p 2 [1, 1). The

purpose of this section is to extend this result to any differentiability order. That is to say,

we wish to prove that u(t, x) 2 D1 ¼ \N2N \ p2[1,1)D
N , p. It is clear that a strengthening of

the regularity of the coefficients is needed.

We shall use the notation

DN
((r1,j1),...,(rN ,jN )) X ¼ hDN

(r1,...,rN ) X , j1 � . . . � jN iH�N ,

for ri 2 [0, T ], ji 2 H, i ¼ 1, . . . , N . Thus, we have that

kDN Xk2
H�N

T
¼
ð

[0,T ]N

dr1 . . . drN

X
j1,..., j N

jD((r1,e j1
),...,(rN ,e j N

)) X j2, (6)

where fe jg j>0 is a complete orthonormal system of H.

Let N 2 N, fix a set AN ¼ fÆi ¼ (ri, ji) 2 Rþ 3H, i ¼ 1, . . . , Ng and set
W

i ri ¼
max(r1, . . . , rN ), Æ ¼ (Æ1, . . . , ÆN ), Æ̂Æi ¼ (Æ1, . . . , Æi�1, Æiþ1, . . . , ÆN ). Denote by Pm the

set of partitions of AN consisting of m disjoint subsets p1, . . . , pm, m ¼ 1, . . . , N , and by

j pij the cardinal of pi. Let X be a random variable belonging to DN ,2, N > 1, and g be a

real CN -function with bounded derivatives up to order N. Leibniz’s rule for Malliavin’s

derivatives yields

DN
Æ (g(X )) ¼

XN

m¼1

X
Pm

cm g(m)(X )
Ym

i¼1

Dj pij
pi

X , (7)

with positive coefficients cm, m ¼ 1, . . . , N , c1 ¼ 1. Let

˜N
Æ (g, X ) :¼ DN

Æ g(X ) � g9(X )DN
Æ X :

Notice that ˜N
Æ (g, X ) ¼ 0 if N ¼ 1 and it only depends on the Malliavin derivatives up to

the order N � 1 if N . 1.
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We now state the main result of this section.

Theorem 1. Assume Hypothesis D and that the coefficients � and b are C1 functions with

bounded derivatives of any order greater than or equal to one. Then, for every

(t, x) 2 [0, T ] 3 Rd, the random variable u(t, x) belongs to the space D1. Moreover,

for any p > 1 and N > 1, there exists an L p(�; H�N
T )-valued random process

fZ N (t, x), (t, x) 2 [0, T ] 3 Rdg such that

DN u(t, x) ¼ Z N (t, x)

þ
ð t

0

ð
Rd

¸(t � s, x � z)[˜N (� , u(s, z)) þ DN u(s, z)� 9(u(s, z))]M(ds, dz)

þ
ð t

0

ds

ð
Rd

¸(s, dz)[˜N (b, u(t � s, x � z))

þ DN u(t � s, x � z)b9(u(t � s, x � z))] (8)

and

sup
(s, y)2[0,T ]3Rd

E(kDN u(s, y)k p

H�N
T

) , þ1:

We prove this theorem by applying the next lemma, which follows from the fact that DN is a

closed operator defined on L p(�) with values in L p(�; H�N
T ).

Lemma 1. Let fFngn>1 be a sequence of random variables belonging to DN , p. Assume that:

(a) there exists a random variable F such that Fn converges to F in L p(�) as n tends to

1,

(b) the sequence fDN Fngn>1 converges in L p(�; H�N
T ).

Then F belongs to DN , p and DN F ¼ L p(�; H�N
T ) � limn!1DN Fn.

As in Quer-Sardanyons and Sanz-Solé (2004), we consider the sequence of processes

fun(t, x), (t, x) 2 [0, T ] 3 Rdg solving the equation

un(t, x) ¼
ð t

0

ð
Rd

¸n(t � s, x � z)� (un(s, z))M(ds, dz)

þ
ð t

0

ds

ð
Rd

b(un(t � s, x � z))¸(s, dz),

where ¸n(t) ¼ łn �¸(t), with łn(x) ¼ ndł(nx), n > 1, ł being a non-negative function in

C1(Rd) with support contained in the unit ball of Rd and such that
Ð
Rd ł(x)dx ¼ 1.

Since ¸n is smooth, a standard proof (see, for instance, Millet and Sanz-Solé 1999;

Márquez-Carreras et al. 2001) yields that un(t, x) 2 D1, for all n > 1. Moreover, the

derivative DN un(t, x) satisfies the equation
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DN
Æ un(t, x) ¼

XN

i¼1

h¸n(t � ri, x � �)DN�1
Æ̂Æi

� (un(ri, �)), jiiH

þ
ð tW ri

i

ð
Rd

¸n(t � s, x � z)[˜N
Æ (� , un(s, z))

þ DN
Æ un(s, z)� 9(un(s, z))]M(ds, dz)

þ
ð tW ri

i

ds

ð
Rd

¸(s, dz)[˜N
Æ (b, un(t � s, x � z))

þ DN
Æ un(t � s, x � z)b9(un(t � s, x � z))], (9)

where Æ ¼ ((r1, j1), . . . , (rN , jN )), with r1, . . . , rN > 0 and j1, . . . , jN 2 H.

Lemma 2. Assume the same hypothesis as in Theorem 1. Then, for all p 2 [1, 1) and every

N > 1,

sup
n>1

sup
( t,x)2[0,T ]3Rd

E
�
kDN un(t, x)k p

H�N
T

�
, þ1: (10)

Proof. We will use an induction argument with respect to N with p > 2 fixed. For N ¼ 1,

the property (10) is proved in Quer-Sardanyons and Sanz-Solé (2003, Proposition 2). Assume

that

sup
n>1

sup
( t,x)2[0,T]3Rd

E
�
kDk un(t, x)k p

H� k
T

�
, þ1,

for any k ¼ 1, . . . , N � 1. Let Æ ¼ ((r1, e j1 ), . . . , (rN , e j N
)), r ¼ (r1, . . . , rN ), dr ¼ dr1 . . .

drN . Then, by (6), we have that

E kDN un(t, x)k p

H�N
T

� �
¼ E

ð
[0,T]N

dr
X

j1,..., jN

jDN
Æ un(t, x)j2

 ! p=2

< C
X5

i¼1

Ni,

where
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N1 ¼ E

ð
[0,T]N

dr
X

j1,..., jN

����XN

i¼1

h¸n(t � ri, x � �) 3 DN�1
Æ̂Æi

� (un(ri, �)), e ji
iH
����
2

 ! p=2

,

N2 ¼ E

ð
[0,T]N

dr
X

j1,..., jN

����
ð tW ri

i

ð
Rd

¸n(t � s, x � z) 3 ˜N
Æ (� , un(s, z))M(ds, dz)

����
2

 ! p=2

,

N3 ¼ E

ð
[0,T]N

dr
X

j1,..., jN

����
ð tW ri

i

ds

ð
Rd

¸(s, dz) 3 ˜N
Æ (b, un(t � s, x � z))

����
2

 ! p=2

,

N4 ¼ E

ð
[0,T]N

dr
X

j1,..., jN

����
ð tW ri

i

ð
Rd

¸n(t � s, x � z)DN
Æ un(s, z) 3 � 9(un(s, z))M(ds, dz)

����
2

 ! p=2

,

N5 ¼ E

ð
[0,T]N

dr
X

j1,..., jN

����
ð tW ri

i

ds

ð
Rd

¸(s, dz)DN
Æ un(t � s, x � z) 3 b9(un(t � s, x � z))

����
2

 ! p=2

:

By Parseval’s identity and the definition of the H-norm, it follows that

N1 < C
XN

i¼1

E

ð
[0,T ]N

dr
X

j1,..., j N

����h¸n(t � ri, x � �) 3 DN�1
Æ̂Æi

� (un(ri, �)), e ji
iH
����
2

 ! p=2

¼ C
Xn

i¼1

E

ð
[0,T]N

dr
X

ĵji

k¸n(t � ri, x � �)DN�1
Æ̂Æ i

� (un(ri, �))k2
H

0
@

1
A

p=2

¼ C
Xn

i¼1

E

ð
[0,T ]N

dr

ð
Rd

ˆ(dz)

ð
Rd

dy¸n(t � ri, x � y)

�

3 ¸n(t � ri, x � y þ z)
X

ĵji

DN�1
Æ̂Æ i

� (un(ri, y))DN�1
Æ̂Æi

� (un(ri, y � z))

2
4

3
5
1
A

p=2

,

where ĵji ¼ j1, . . . , ji�1, jiþ1, . . . , jN . Then, by the Cauchy–Schwarz inequality and

Hölder’s inequality the preceding expression is bounded by
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Xn

i¼1

E

ðT

0

dri

ð
Rd

ˆ(dz)

ð
Rd

dy¸n(t � ri, x � y)¸n(t � ri, x � y þ z)

�

3

ð
[0,T]N�1

d r̂rikDN�1
r̂ri

� (un(ri, y))kH�( N�1) 3 kDN�1
r̂ri

� (un(ri, y � z))kH�( N�1)

� p=2

< C
Xn

i¼1

ðT

0

dri

ð
Rd

ˆ(dz)

ð
Rd

dy¸n(t � ri, x � y)¸n(t � ri, x � y þ z)

3 E

ð
[0,T ]N�1

d r̂rikDN�1
r̂ri

� (un(ri, y))kH�( N�1) 3 kDN�1
r̂ri

� (un(ri, y � z))kH�( N�1)

� � p=2

< C
Xn

i¼1

ðT

0

dri

ð
Rd

ˆ(dz)

ð
Rd

dy¸n(t � ri, x � y)¸n(t � ri, x � y þ z)

3 sup
v2Rd

E

ð
[0,T] N�1

d r̂rikDN�1
r̂ri

� (un(ri, v))k2
H�( N�1)

� � p=2

< C sup
(s,z)2[0,T ]3Rd

E kDN�1� (un(s, z))k p

H�( N�1)

T

� �
,

with d r̂ri ¼ dr1 . . . dri�1driþ1 . . . drN . By (7), the assumptions on � and the induction

hypothesis, it follows that N1 is uniformly bounded with respect to n, t and x.

In the remaining terms we can replace
W

i ri by 0, because the Malliavin derivatives

involved vanish for t ,
W

i ri.

By Proposition 1 (see (5)),

N2 ¼ E

����
ð t

0

ð
Rd

¸n(t � s, x � z)˜N (� , un(s, z))M(ds, dz)

����
p

H�N
T

 !

< C

ð t

0

ds sup
y2Rd

E k˜N (� , un(s, y))k p

H�N
T

� �ð
Rd

�(d�)jF¸(t � s)(�)j2

< C

ð t

0

ds sup
(�, y)2[0,s]3Rd

E k˜N (� , un(�, y))k p

H�N
T

� �
J (t � s),

with J (t) ¼
Ð
Rd �(d�)jF¸(t)(�)j2. According to the induction hypothesis, this last term is

uniformly bounded with respect to n, t and x.

Using similar arguments – this time for deterministic integration of Hilbert-valued

processes – Hölder’s inequality and the assumptions on ¸, we obtain
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N3 < C

ð t

0

ds

ð
Rd

¸(s, dz)Ek˜N (b, un(t � s, x � z))k p

H�N
T

< C sup
(s, y)2[0,T ]3Rd

E k˜N (b, un(s, y))k p

H�N
T

� �
,

which again, by the induction hypothesis, is uniformly bounded in n, t and x.

For N4 we proceed as for N2; this yields

N4 < C

ð t

0

ds sup
(�, y)2[0,s]3Rd

E kDN un(�, y))k p
H�

T
N

� �
J (t � s):

Finally, as for N3,

N5 < C

ð t

0

ds sup
(�, y)2[0,s]3Rd

E kDN un(�, y))k p

H�N
T

� �
:

Summarizing the estimates obtained so far, we obtain

sup
(s, y)2[0, t]3Rd

E kDN un(s, y))k p

H�N
T

� �

< C 1 þ
ð t

0

ds sup
(�, y)2[0,s]3Rd

E kDN un(�, y))k p

H�N
T

� �
(J (t � s) þ 1)

" #
:

An application of a version of Gronwall’s lemma (Dalang 1999, Lemma 15) concludes the

proof. h

For N > 1, n > 1, r ¼ (r1, . . . , rN ), Æ ¼ ((r1, e j1 ), . . . , (rN , e j N
)) and (t, x) 2 [0, t] 3

Rd , we define the H�N -valued random variable Z N ,n
r (t, x) as follows:

hZ N ,n
r (t, x), e j1 � . . . � e j N

iH�N ¼
XN

i¼1

h¸n(t � ri, x � �)DN�1
Æ̂Æi

� (un(ri, �)), e ji
iH:

Applying Lemma 2, it can easily be seen that Z N ,n(t, x) 2 L p(�; H�N
T ) and

sup
n>1

sup
( t,x)2[0,T]3Rd

E kZ N ,n(t, x)k p

H�N
T

� �
, þ1, (11)

for every p 2 [1, 1). Notice that Z N ,n(t, x) coincides with the first term of the right-hand

side of (9) for Æ ¼ ((r1, e j1 ), . . . , (rN , e j N
)).

On the other hand, for N > 1, we introduce the assumption that the sequence

fD jun(t, x), n > 1g converges in L p(�; H� j
T ), j ¼ 1, . . . , N � 1, with the convention that

L p(�; H�0
T ) ¼ L p(�) We denote this assumption by (H N�1).

Proposition 1 in Quer-Sardanyons and Sanz-Solé (2004) yields the validity of (H0).

Moreover, for N . 1, (H N�1) implies that u(t, x) 2 D j, p and the sequences

fD jun(t, x), n > 1g converge in L p(�; H� j
T ) to D ju(t, x). In addition, by Lemma 2,
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sup
(s, y)2[0,T ]3Rd

E(kD ju(s, y)k p

H� j

T

) , 1, (12)

j ¼ 1, . . . , N � 1.

Lemma 3. Fix N > 1. Assume the same hypothesis as in Theorem 1 and that (H N�1) holds.

Then the sequence fZ N ,n(t, x)gn>1 converges in L p(�; H�N
T ) to a random variable Z N (t, x).

Proof. For N ¼ 1 the result is proved in Quer-Sardanyons and Sanz-Solé (2004, Proposition

3). Assume N . 1. In view of (11), it suffices to show that fZ N ,n(t, x)gn>1 is a Cauchy

sequence in L2(�; H�N
T ).

For n, m > 1, set

Z n,m :¼ E

ð
[0,T ]N

dr
X

j1,..., jN

����XN

i¼1

h¸n(t � ri, x � �)DN�1
Æ̂Æi

� (un(ri, �)), e ji
iH:

�
XN

i¼1

h¸m(t � ri, x � �)DN�1
Æ̂Æi

� (um(ri, �)), e ji
iH
����
2

:

Then

Z n,m < C(Z n
1 þ Z

n,m
2 þ Z m

3 ),

where

Z n
1 ¼

XN

i¼1

E

ð
[0,T ]N

dr
X

j1,..., j N

jh¸n(t � ri, x � �) 3 [DN�1
Æ̂Æi

� (un(ri, �)) � DN�1
Æ̂Æi

� (u(ri, �))], e ji
iHj2,

Z
n,m
2 ¼

XN

i¼1

E

ð
[0,T ]N

dr
X

j1,..., j N

jhDN�1
Æ̂Æi

� (u(ri, �)) 3 [¸n(t � ri, x � �) �¸m(t � ri, x � �)], e ji
iHj2,

Z m
3 ¼

XN

i¼1

E

ð
[0,T ]N

dr
X

j1,..., j N

jh¸m(t � ri, x � �) 3 [DN�1
Æ̂Æi

� (u(ri, �)) � DN�1
Æ̂Æ i

� (um(ri, �))], e ji
iHj2:

Parseval’s identity and the Cauchy–Schwarz inequality ensure that
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Z n
1 ¼

XN

i¼1

E

ð
[0,T ]N�1

d r̂ri

X
ĵji

k¸n(t � �, x � �)[DN�1
Æ̂Æ i

� (un(�, �)) � DN�1
Æ̂Æi

� (u(�, �))]k2
HT

<
XN

i¼1

E

ð
[0,T]N�1

d r̂ri

ð t

0

ds

ð
Rd

ˆ(dz)

ð
Rd

dy¸n(t � s, x � y)

3¸n(t � s, x � y þ z)kDN�1
r̂ri

(� (un(s, y)) � � (u(s, y)))kH�( N�1)

3 kDN�1
r̂ri

(� (un(s, y � z)) � � (u(s, y � z)))kH�( N�1)

< sup
(s, y)2[0,T]3Rd

E jDN�1(� (un(s, y)) � � (u(s, y)))j2H�( N�1)

T

� �
3

ð t

0

ds

ð
Rd

�(d�)jF¸(t � s)(�)j2

< C sup
(s, y)2[0,T]3Rd

E kDN�1(� (un(s, y)) � � (u(s, y)))k2

H�( N�1)

T

� �
:

Equation (7), Lemma 3 and assumption (H N�1) yield that the last term tends to zero as n

goes to infinity. Analogously, Z m
3 tends to zero as m tends to infinity.

Using similar arguments, we obtain

Z
n,m
2 ¼

XN

i¼1

E

ð
[0,T ]N�1

d r̂ri

X
ĵji

kDN�1
Æ̂Æi

� (u(�, �))[¸n(t � �, x � �) �¸m(t � �, x � �)]k2
HT

¼
XN

i¼1

E

ð
[0,T ]N�1

d r̂ri

X
ĵji

ðT

0

ds

ð
Rd

ˆ(dz)

ð
Rd

dyDN�1
Æ̂Æi

� (u(s, y))

3 DN�1
Æ̂Æ i

� (u(s, y � z))[¸n(t � s, x � y) �¸m(t � s, x � y)]

3 [¸n(t � s, x � y þ z) �¸m(t � s, x � y þ z)]

¼
XN

i¼1

E

ð
[0,T ]N�1

d r̂ri

X
ĵji

ðT

0

ds

ð
Rd

�
D N�1

Æ̂Æi
� (u)

s (d�)jF (¸n(t � s) �¸m(t � s))(�)j2:

This term tends to zero as m and n go to infinity. Indeed, arguing as in the proof of Theorem

2 from Dalang (1999), we have that

k¸(t � �)k2
0,DN�1

Æ̂Æi
� (u) < lim inf

k!1
k¸k(t � �)k2

0,D N�1
Æ̂Æi

� (u):
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Then, by Fatou’s lemma,

E

ð
[0,T]N�1

d r̂ri

X
ĵ ii

ðT

0

ds

ð
Rd

�
DN�1

Æ̂Æi
� (u)

s (d�)jF¸(t � s)(�)j2

¼
ð

[0,T ]N�1

d r̂ri

X
ĵ ii

k¸(t � �)k2
0,D N�1

Æ̂Æi
� (u)

< lim inf
k!1

ð
[0,T]N�1

d r̂ri

X
ĵji

k¸k(t � �)k2
0,DN�1

Æ̂Æi
� (u):

This last term is bounded by a finite constant not depending on k, as can easily be seen using

(12). Then we conclude by bounded convergence. h

Proof of Theorem 1. Fix (t, x) 2 (0, T ] 3 Rd , p 2 [2, 1). We apply Lemma 1 to

Fn :¼ un(t, x) and F :¼ u(t, x). We know that assumption (a) of the lemma is satisfied.

Let us check that the sequence fDN un(t, x)gn>1 converges in the space L p(�; H�N
T ), for

every N > 1 and p > 2, which implies that the random variable DN u(t, x) exists, belongs

to L p(�; H�N
T ) and, by Lemma 2, satisfies

sup
(s, y)2[0,T ]3Rd

E(kDN u(s, y)k p

H�N
T

) , þ1:

Owing to Lemma 2, it suffices to check the assertion for p ¼ 2. We will use an induction

argument on N . For N ¼ 1 the proof is given in Theorem 2 of Quer-Sardanyons and Sanz-

Solé (2004).

Assume the induction hypothesis (H N�1). Let B p,N be the class of progressively

measurable H�N
T -valued processes f�(t, x), (t, x) 2 [0, T ] 3 Rdg with spatially homoge-

neous covariance function and satisfying

sup
(s, y)2[0,T ]3Rd

E(k�(s, y)kH�N
T

) , þ1:

We consider the stochastic integral equation in B p,N ,

U (t, x) ¼ Z N (t, x) þ
ð t

0

ð
Rd

¸(t � s, x � z)[˜(� , u(s, z)) þ U (s, z)� 9(u(s, z))]M(ds, dz)

þ
ð t

0

ds

ð
Rd

¸(s, dz)[˜(b, u(t � s, x � z)) þ U (t � s, x � z)b9(u(t � s, x � z))],

with Z N (t, x) given in Lemma 3. There exists a unique solution to this equation. Moreover,

following arguments similar to those in the proof of Theorem 2 in Quer-Sardanyons and

Sanz-Solé (2004), owing to Lemma 3 and (H N�1) it is easy to prove that

U (t, x) ¼ L2(�; H�N
T ) � lim

n!1
DN un(t, x),

the limit being uniform in (t, x). Then by uniqueness of the solution U � DN u, and the

process DN u(t, x) satisfies equation (8). h
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4. Study of the inverse of the Malliavin matrix

In this section we consider the stochastic wave equation (1). Let S3 be the fundamental

solution of Lu ¼ 0 where L ¼ @2=@ t2 � ˜3. In this case condition (4) is equivalent toð
R3

�(d�)

1 þ j�j2 , 1, (13)

and this implies Hypothesis D (for details, see Dalang 1999).

Let fu(t, x), (t, x) 2 [0, T ] 3 R3g be the real-valued process solving (1). The purpose of

this section is to study the L p-integrability of the inverse of the Malliavin variance of

u(t, x) for any fixed (t, x) 2 (0, T ] 3 R3. More precisely, we prove the following result.

Theorem 2. Assume that the coefficients � and b are C1 functions with bounded Lipschitz

continuous derivatives and, in addition, that:

(a) there exists �0 . 0 such that inffj� (z)j, z 2 Rg > �0;

(b) there exists � 2 (0, 1
2
) such that

sup
y2R3

ð
R3

ˆ(dx)F�1 1

(1 þ j�j2)�

� �
(x � y) , 1:

Then, for any p . 0,

E kDu(t, x)k� p
HT

� �
, 1:

This result, together with Theorem 1 applied to equation (1), yields the main result of the

paper, as follows.

Theorem 3. Assume that the coefficients � and b are C1 functions with bounded derivatives

of any order greater than or equal to one, and that hypotheses (a) and (b) of Theorem 2 are

satisfied. Then the random variable u(t, x), (t, x) 2 (0, T ] 3 R3, has a density which is a C1

function.

We notice that assumption (b) in Theorem 2 implies (13) (Lévêque 2001, Proposition 4.4.1).

Recall that the Malliavin derivative Du(t, x) of the solution to (1) satisfies the equation

Du(t, x) ¼ Z(t, x) þ
ð t

0

ð
R3

S3(t � s, x � z)� 9(u(s, z))Du(s, z)M(ds, dz)

þ
ð t

0

ds

ð
R3

S3(t � s, dz)b9(u(s, x � z))Du(s, x � z), (14)

where fZ(t, x), (t, x) 2 [0, T ] 3 R3g is the HT -valued random process given by

Z(t, x) ¼ L p(�; HT ) � lim
n!1

Z n(t, x),
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p > 1, where Z n(t, x) :¼ S3,n(t � �, x � �)� (u(�, �)) with S3,n ¼ S3 � łn; see either Theorem

1 or Quer-Sardanyons and Sanz-Solé (2004, Theorem 2).

Lemma 4. Assume that � is Lipschitz continuous and that condition (13) is satisfied. Then,

for any (t, x) 2 (0, T ] 3 R3, v 2 (0, t] and q > 1,

E kZ t��,�(t, x)k2q
Hv

� �
< C

ðv
0

ds

ð
R3

�(d�)jF S3(s)(�)j2
� �q

:

Proof. Hölder’s inequality with respect to the non-negative finite measure

S3,n(s, x � y)S3,n(s, x � y þ z)dsˆ(dz)dy yields

E(kZ t��,�(t, x)k2q
Hv

) ¼ lim
n!1

E(kZ n
t��,�(t, x)k2q

Hv
)

¼ lim
n!1

E(kS3,n(�, x � �)� (u(t � �, �))k2q
Hv

)

¼ lim
n!1

E

����
ðv

0

ds

ð
R3

ˆ(dz)

ð
R3

dyS3,n(s, x � y)� (u(t � s, y))

�

3S3,n(s, x � y þ z)� (u(t � s, y � z))

�����
q
1
A

< lim
n!1

ðv
0

ds

ð
R3

ˆ(dz)

ð
R3

dyS3,n(s, x � y)S3,n(s, x � y þ z)

� �q�1

3

ðv
0

ds

ð
R3

ˆ(dz)

ð
R3

dyS3,n(s, x � y)S3,n(s, x � y þ z)

3 E(j� (u(t � s, y))� (u(t � s, y � z)jq)

< C 1 þ sup
(s,z)2[0,T]3R3

E(ju(s, z)j2q)

 !

3 lim
n!1

ðv
0

ds

ð
R3

ˆ(dz)(S3,n(s) � ~SS3,n(s))(z)

� �q

< C(

ðv
0

ds

ð
R3

�(d�)jF S3(s)(�)j2)q,

where in the last inequality we have used the Lq uniform boundedness of u(t, x). h

Owing to Lemma 4 and Proposition 1, we obtain the following technical result.

Lemma 5. Under the same hypothesis as in Lemma 4, we have that

A stochastic wave equation in dimension 3 179



sup
t�v<s< t

sup
y2R3

E(kDt��,�u(s, y)k2q
Hv

) < C

ðv
0

ds

ð
R3

�(d�)jF S3(s)(�)j2
� �q

,

for all t 2 (0, T ] and q > 1.

We remark that both of the preceding lemmas also hold in the more general setting of

Section 3.

Proof of Theorem 2. Fix p . 0; it suffices to check that, for some E0 . 0,

ðE0

0

E�(1þ p) PfkDu(t, x)k2
HT

, EgdE , 1:

Let E1, � . 0 be such that, for any E 2 (0, E1], t � E� . 0. Owing to (14), we consider the

decomposition

PfkDu(t, x)k2
HT

, Eg < P1(E, �) þ P2,1(E, �, �) þ P2,2(E, �, �),

where

P1(E, �) ¼ P

����
ð t

t�E�
drU (t, r, x)

���� > E
� �

,

P2,1(E, �, �) ¼ PfkSE�� (�, x � �)� (u(t � �, �))k2
HE�

, 6Eg,

P2,2(E, �, �) ¼ PfkZ t��,�(t, x) � SE�� (�, x � �)� (u(t � �, �))k2
HE�

> Eg,

with U (t, r, x) ¼ kDr,�u(t, x)k2
H � kZ r,�(t, x)k2

H and SE�� ¼ łE�� � S3, łE�� (x) ¼
E�3�ł(E��x), � . 0 and ł a non-negative function in C1(R3) with support contained in

the unit ball of R3 and such that
Ð
R3 ł(x)dx ¼ 1.

Let us first consider the term P1(E, �). By Chebyshev’s inequality, for every q > 1 we

have that

P1(E, �) < E�qE

����
ð t

t�E�
drU (t, r, x)

����
q� �

< CE�q
X5

k¼1

Tk , (15)

with
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T1 ¼ E

����
ð t

t�E�
dr Z r,�(t, x),

ð t

t�E�

ð
R3

S3(t � s, x � z)Dr,�u(s, z) 3 � 9(u(s, z))M(ds, dz)

� 	
H

����
q� �

,

T2 ¼ E

����
ð t

t�E�
dr Z r,�(t, x),

ð t

t�E�
ds

ð
R3

S3(t � s, dz)Dr,�u(s, x � z) 3 b9(u(s, x � z))

� 	
H

����
q� �

,

T3 ¼ E

����
ð t

t�E�
dr







ð t

t�E�

ð
R3

S3(t � s, x � z)Dr,�u(s, z) 3 � 9(u(s, z))M(ds, dz)







2

H

����
q

0
@

1
A,

T4 ¼ E

����
ð t

t�E�
dr

ð t

t�E�

ð
R3

S3(t � s, x � z)Dr,�u(s, z)� 9(u(s, z))M(ds, dz),

��

3

ð t

t�E�
ds

ð
R3

S3(t � s, dz)Dr,�u(s, x � z)b9(u(s, x � z))

	
H

����
q�

,

T5 ¼ E

����
ð t

t�E�
dr







ð t

t�E�
ds

ð
R3

S3(t � s, dz)Dr,�u(s, x � z) 3 b9(u(s, x � z))







2

H

����
q

0
@

1
A:

Schwarz’s inequality yields

T1 < T
1=2
11 T

1=2
12 ,

with

T11 ¼ E

����
ð t

t�E�
drkZ r,�(t, x)k2

H

����
q� �

,

T12 ¼ E

����
ð t

t�E�
drk
ð t

t�E�

ð
R3

S3(t � s, x � z)Dr,�u(s, z) 3 � 9(u(s, z))M(ds, dz)k2
H

����
q� �

:

By Lemma 4 and (27),

T11 ¼ E kZ t��,�(t, x)k2q
HE�

� �
< CEq�(3�2�): (16)

We have that

T12 ¼ E







ð t

t�E�

ð
R3

S3(t � s, x � z)Dt��,�u(s, z)� 9(u(s, z))M(ds, dz)







2q

HE�

0
@

1
A:

Here we apply Proposition 1 to A :¼ HE� , K(s, z) :¼ Dt��,�u(s, z)� 9(u(s, z)) and S :¼ S3.

Thus, Lemma 5 and (27) ensure that

T12 < C

ðE�
0

ds

ð
R3

�(d�)jF S3(s)(�)j2
 !2q

< E2q�(3�2�):

Hence,
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T1 < CE3q�(3�2�)=2: (17)

We now consider the term

T22 :¼ E







ð t

t�E�
ds

ð
R3

S3(t � s, dz)Dt��,�u(s, x � z)b9(u(s, x � z))







2q

HE�

0
@

1
A:

Hölder’s inequality with respect to the finite measure S3(t � s, dz)ds on [t � E�, t] 3 R3

yields

T22 <

ð t

t�E�
ds

ð
R3

S3(t � s, dz)

� �2q�1

3 E

ð t

t�E�
ds

ð
R3

S3(t � s, dz)kDt��,�u(s, x � z)b9(u(s, x � z))k2q
HE�

� �
:

Notice that ð t

t�E�
ds

ð
R3

S3(t � s, dz) ¼
ðE�

0

ds

ð
R3

S3(s, dz) < CE2�,

because S3(t) ¼ � t=4�t, where � t denotes the uniform measure on the three-dimensional

sphere of radius t. Then, since b9 is bounded, Lemma 5 and (27) imply

T22 < CE4q�þq�(3�2�) ¼ CEq�(7�2�): (18)

Schwarz’s inequality and the estimates (16), (17), (18) yield

T2 < T
1=2
11 T

1=2
22 < CEq�(5�2�),

T3 ¼ T12 < CE2q�(3�2�),

T4 < T
1=2
12 T

1=2
22 < CEq�(13=2�3�),

T5 ¼ T22 < CEq�(7�2�): (19)

Therefore, (15), (17) and (19) imply

P1(E, �) < CEq(�1þ3�(3�2�)=2):

Consequently,
Ð E0

0
P1(E, �)E�(1þ p)dE , 1 if

1

�
,

3
2
q(3 � 2�)

p þ q
: (20)

We now study the term P2,1(E, �, �). Our purpose is to choose some positive � and �
such that, for E sufficiently small, fkSE�� (�, x � �)� (u(t � �, �))k2

HE�
, 6Eg is the empty set

and therefore P2,1(E, �, �) ¼ 0. Assumption (a) in Theorem 2 yields
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kSE�� (r, x � �)� (u(t � r, �))k2
H > � 2

0

ð
R3

�(d�)jF SE��(r)(�)j2

> � 2
0

1

2

ð
R3

�(d�)jF S3(r)(�)j2 �
ð
R3

�(d�)jF (SE�� � S3)(r)(�)j2
� �

:

We have that

jF (SE�� � S3)(r)(�)j2 ¼ jFłE��(�) � 1j2jF S3(r)(�)j2

< 4�jF S3(r)(�)j2j�jE�:

Therefore, the lower bounds (26) and (28) yield

kSE��(�, x � �)� (u(t � �, �))k2
HE�

> � 2
0

1

2

ðE�
0

dr

ð
R3

�(d�)jF S3(r)(�)j2 � 4�E�
ðE�

0

dr

ð
R3

�(d�)j�kF S3(r)(�)j2
 !

> � 2
0

1

2
C1E3� � C2E�þ�(2�2�)

� �
,

for some positive constants C1, C2. Let �, � . 0 be such that

1 þ 2�

�
,

1

�
; (21)

then

1

2
C1E3� � C2E�þ�(2�2�) > 1

4
C1E3�, for all E < E2 :¼ C1

4C2

� �1=(���(1þ2�))

:

Thus, for any E < E2,

kSE�� (�, x � �)� (u(t � �, �))k2
HE�

> � 2
0

1
4
C1E3�:

Moreover, the condition

3� , 1 (22)

implies

6E , � 2
0

C1

4
E3�, for E < E3 :¼ C1� 2

0

24

� �1=(1�3�)

:

Hence, if �, � . 0 satisfy (21) and (22) then P2,1(E, �, �) ¼ 0, for any E < E2 ^ E3.

Consider now the term P2,2(E, �, �). By Chebyshev’s inequality and (29), we have that
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P2,2(E, �, �) < E�1E(kZ t��,�(t, x) � SE��(�, x � �)� (u(t � �, �))k2
HE�

)

¼ E�1

ðE�
0

ds

ð
R3

��s (d�)jF (S3(s) � SE�� (s))(�)j2

< 4�E�1þ�

ðE�
0

ds

ð
R3

��s (d�)j�kF S3(s)(�)j2

< CE�1þ�þ�(2�2�),

for some positive constant C, where � denotes the process f� (u(t � r, x)),

(r, x) 2 [0, t] 3 R3g.

Thus,
Ð E0

0
E�(1þ p) P2,2(E, �, �)dE , 1 if and only if

�1 � p þ �þ �(2 � 2�) . 0: (23)

We finish the proof by analysing the compatibility of the conditions (20)–(23). We recall

that � 2 (0, 1
2
) and p 2 [0, 1) are fixed. Choose � . 0 such that

1 þ 2�

3
, �: (24)

Then (20)–(23) are equivalent to (23) and

3 ,
1

�
,

3
2
q(3 � 2�)

p þ q
: (25)

Let q0 > 1 be such that 3 , 3
2
q0(3 � 2�)=( p þ q0), or equivalently 2 p=(1 � 2�) , q0. Then

let �0 . 0 satisfy (25) with q ¼ q0. For this �0, choose �0 . 0 sufficiently large such that

(23) and (24) hold. The proof of the theorem is complete. h

Appendix

In this appendix we present some of the technical results that have been used in the proofs

of Section 4. These provide bounds for integrals involving the Fourier transform of the

fundamental solution of the wave equation in any spatial dimension d, denoted here by Sd.

The proofs of these results are given in Quer-Sardanyons and Sanz-Solé (2004, Appendix).

We recall that, for every d > 1,

F Sd(t)(�) ¼ sin (2�tj�j)
2�j�j :

For any � 2 (0, 1], we introduce the assumptionð
Rd

�(d�)

(1 þ j�j2)�
, 1
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which we denote by (H�). We observe that (H�) is weaker than assumption (b) of Theorem 2

(Lévêque 2001, Proposition 4.4.1).

Assume that (H�) holds for � ¼ 1. Then there exist two positive constants Ci, i ¼ 1, 2,

such that, for any t 2 (0, 1),

C1 t3 <

ð t

0

ds

ð
Rd

�(d�)jF Sd(s)(�)j2 < C2 t: (26)

Suppose that (H�) holds for some � 2 (0, 1). Then, there exists a positive constant C3,

such that for any t 2 [0, T ],ð t

0

ds

ð
Rd

�(d�)jF Sd(s)(�)j2 < C3 t3�2�: (27)

Assume that (H�) holds for some � 2 (0, 1
2
). Then there exists a positive constant C4

such that for any t 2 [0, T ],ð t

0

ds

ð
Rd

�(d�)j�kF Sd(s)(�)j2 < C4 t2�2�: (28)

Let fZ(t, x), (t, x) 2 [0, T ] 3 Rdg be a predictable L2-valued process with stationary

covariance function and such that sup( t,x)2[0,T]3Rd E(jZ(t, x)j2) , 1. Assume that hypothesis

(b) of Theorem 2 holds. Then, there exists a positive constant C5 such thatð t

0

ds

ð
Rd

�Z
s (d�)j�kF Sd(s)(�)j2 < C4 t2�2�: (29)
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Doctoral thesis no. 2452, École Polytechnique Fédérale de Switzerland, Lausanne, Switzerland.

Márquez-Carreras, D., Mellouk, M. and Sarrà, M. (2001) On stochastic partial differential equations

with spatially correlated noise: smoothness of the law. Stochastic Process. Appl., 93, 269–284.
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