Open Access
2010 Quotient mean series
Biserka Drascic Ban
Banach J. Math. Anal. 4(2): 87-99 (2010). DOI: 10.15352/bjma/1297117243

Abstract

The well-known Mathieu series

\begin{eqnarray*} S_M(r) = \sum_{n=1}^{\infty}\frac{2n}{(n^2+r^2)^2} \qquad (r>0), \end{eqnarray*}

can be transformed into the form

\begin{eqnarray*} S_M(r) = \frac{1}{2r}\sum_{n=1}^{\infty} \frac{\sqrt{nr}^2}{\left(\sqrt{\frac{n^2+r^2}{2}}\right)^4} =\frac{1}{2r}\sum_{n=1}^{\infty}\frac{G^2(n,r)}{Q^4(n,r)}, \end{eqnarray*}

where $G(n,r)$ and $Q(n,r)$ denote the Geometric and Quadratic mean of $n\in \mathbb N$ and $r>0$. This connection leads us to the idea to introduce and research the so--called Quotient mean series as a be a generalizations of Mathieu's and Mathieu--type series. We give an integral representation of such series and their alternating variant, together with associated inequalities. Also, special cases of quotient mean series, involving Bessel function of the first kind, have been studied in detail.

Citation

Download Citation

Biserka Drascic Ban. "Quotient mean series." Banach J. Math. Anal. 4 (2) 87 - 99, 2010. https://doi.org/10.15352/bjma/1297117243

Information

Published: 2010
First available in Project Euclid: 7 February 2011

zbMATH: 1224.26051
MathSciNet: MR2606484
Digital Object Identifier: 10.15352/bjma/1297117243

Subjects:
Primary: 26D15
Secondary: 40B05 , 40G99

Keywords: Bessel function of the first kind , Dirichlet--series , Euler--Maclaurin summation formula , Gamma function , Landau estimates , Mathieu series , ‎mean‎ , Olenko estimates , quotient mean series

Rights: Copyright © 2010 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2010
Back to Top