Open Access
2010 Innerness of higher derivations
M Mirzavaziri, K. Naranjani, A. Niknam
Banach J. Math. Anal. 4(2): 99-110 (2010). DOI: 10.15352/bjma/1297117246

Abstract

Let $A$ be an algebra. A sequence $\{d_n\}$ of linear mappings on $A$ is called a higher derivation if $d_n(ab)=\sum_{k=0}^n d_k(a)d_{n-k}(b)$ for each $a,b\in A$ and each nonnegative integer $n$. In this paper a notion of an inner higher derivation is given. We characterize all uniformly bounded inner higher derivations on Banach algebras and show that each uniformly bounded higher derivation on a Banach algebra $A$ is inner provided that each derivation on $A$ is inner.

Citation

Download Citation

M Mirzavaziri. K. Naranjani. A. Niknam. "Innerness of higher derivations." Banach J. Math. Anal. 4 (2) 99 - 110, 2010. https://doi.org/10.15352/bjma/1297117246

Information

Published: 2010
First available in Project Euclid: 7 February 2011

zbMATH: 1186.47036
MathSciNet: MR2610883
Digital Object Identifier: 10.15352/bjma/1297117246

Subjects:
Secondary: ‎32A36‎ , 47B33 , 47B38

Keywords: $Q^{q}_{\log}$ , Composition operator , generally weighted Bloch space , holomorphic self-map

Rights: Copyright © 2010 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2010
Back to Top