In this article, we study some geometric properties like parallelism, orthogonality, and semirotundity in the space of bounded linear operators. We completely characterize parallelism of two compact linear operators between normed linear spaces $\mathbb{X}$ and $\mathbb{Y}$, assuming $\mathbb{X}$ to be reflexive. We also characterize parallelism of two bounded linear operators between normed linear spaces $\mathbb{X}$ and $\mathbb{Y}$. We investigate parallelism and approximate parallelism in the space of bounded linear operators defined on a Hilbert space. Using the characterization of operator parallelism, we study Birkhoff–James orthogonality in the space of compact linear operators as well as bounded linear operators. Finally, we introduce the concept of semirotund points (semirotund spaces) which generalizes the notion of exposed points (strictly convex spaces). We further study semirotund operators and prove that $\mathbb{B}(\mathbb{X},\mathbb{Y})$ is a semirotund space which is not strictly convex if $\mathbb{X},\mathbb{Y}$ are finite-dimensional Banach spaces and $\mathbb{Y}$ is strictly convex.

## References

*The Birkhoff–James orthogonality in Hilbert $C^{\ast}$-modules*, Linear Algebra Appl.

**437**(2012), no. 7, 1913–1929. 1257.46025 10.1016/j.laa.2012.05.011[1] L. Arambašić and R. Rajić,

*The Birkhoff–James orthogonality in Hilbert $C^{\ast}$-modules*, Linear Algebra Appl.

**437**(2012), no. 7, 1913–1929. 1257.46025 10.1016/j.laa.2012.05.011

*Orthogonality of matrices and distance problems*, Linear Algebra Appl.

**287**(1999), no 1–3, 77–85. 0937.15023 10.1016/S0024-3795(98)10134-9[3] R. Bhatia and P. Šemrl,

*Orthogonality of matrices and distance problems*, Linear Algebra Appl.

**287**(1999), no 1–3, 77–85. 0937.15023 10.1016/S0024-3795(98)10134-9

*Characterization of Birkhoff–James orthogonality*, J. Math. Anal. Appl.

**407**(2013), no. 2, 350–358. 1315.46017 10.1016/j.jmaa.2013.05.022[4] T. Bhattacharyya and P. Grover,

*Characterization of Birkhoff–James orthogonality*, J. Math. Anal. Appl.

**407**(2013), no. 2, 350–358. 1315.46017 10.1016/j.jmaa.2013.05.022

*Orthogonality in linear metric spaces*, Duke Math. J.

**1**(1935), no. 2, 169–172. 0012.30604 10.1215/S0012-7094-35-00115-6 euclid.dmj/1077488974[5] G. Birkhoff,

*Orthogonality in linear metric spaces*, Duke Math. J.

**1**(1935), no. 2, 169–172. 0012.30604 10.1215/S0012-7094-35-00115-6 euclid.dmj/1077488974

*Orthogonality and parallelism of operators on various Banach spaces*, to appear in J. Aust. Math. Soc., preprint, arXiv:1609.06615v3 [math.FA]. 1609.06615v3 07039555 10.1017/S1446788718000150[6] T. Bottazzi, C. Conde, M. S. Moslehian, P. Wójcik, and A. Zamani,

*Orthogonality and parallelism of operators on various Banach spaces*, to appear in J. Aust. Math. Soc., preprint, arXiv:1609.06615v3 [math.FA]. 1609.06615v3 07039555 10.1017/S1446788718000150

*Linear mappings approximately preserving orthogonality*, J. Math. Anal. Appl.

**304**(2005), no. 1, 158–169. 1090.46017 10.1016/j.jmaa.2004.09.011[7] J. Chmieliński,

*Linear mappings approximately preserving orthogonality*, J. Math. Anal. Appl.

**304**(2005), no. 1, 158–169. 1090.46017 10.1016/j.jmaa.2004.09.011

*A Course in Functional Analysis*, 2nd ed., Grad. Texts in Math.

**96**, Springer, New York, 1990. 0706.46003[8] J. B. Conway,

*A Course in Functional Analysis*, 2nd ed., Grad. Texts in Math.

**96**, Springer, New York, 1990. 0706.46003

*On approximation of continuous linear functionals in normed linear spaces*, An. Univ. Timişoara Ser. Ştiinţ. Mat.

**29**(1991), no. 1, 51–58. 0786.46017[9] S. S. Dragomir,

*On approximation of continuous linear functionals in normed linear spaces*, An. Univ. Timişoara Ser. Ştiinţ. Mat.

**29**(1991), no. 1, 51–58. 0786.46017

*On symmetry of Birkhoff–James orthogonality of linear operators*, Adv. Oper. Theory

**2**(2017), no. 4, 428–434. 1386.46017[10] P. Ghosh, D. Sain, and K. Paul,

*On symmetry of Birkhoff–James orthogonality of linear operators*, Adv. Oper. Theory

**2**(2017), no. 4, 428–434. 1386.46017

*Orthogonality and linear functionals in normed linear spaces*, Trans. Amer. Math. Soc.

**61**(1947), 265–292. 0037.08001 10.1090/S0002-9947-1947-0021241-4[11] R. C. James,

*Orthogonality and linear functionals in normed linear spaces*, Trans. Amer. Math. Soc.

**61**(1947), 265–292. 0037.08001 10.1090/S0002-9947-1947-0021241-4

*Orthogonality of matrices*, Linear Algebra Appl.

**347**(2002), no. 1–3, 115–122. 1003.15028 10.1016/S0024-3795(01)00530-4[12] C. K. Li and H. Schneider,

*Orthogonality of matrices*, Linear Algebra Appl.

**347**(2002), no. 1–3, 115–122. 1003.15028 10.1016/S0024-3795(01)00530-4

*Birkhoff–James orthogonality and smoothness of bounded linear operators*, Linear Algebra Appl.

**506**(2016), 551–563. 1353.46011 10.1016/j.laa.2016.06.024[13] K. Paul, D. Sain, and P. Ghosh,

*Birkhoff–James orthogonality and smoothness of bounded linear operators*, Linear Algebra Appl.

**506**(2016), 551–563. 1353.46011 10.1016/j.laa.2016.06.024

*On strong orthogonality and strictly convex normed linear spaces*, J. Inequal. Appl.

**2013**, no. 242. 1291.46014 10.1186/1029-242X-2013-242[14] K. Paul, D. Sain, and K. Jha,

*On strong orthogonality and strictly convex normed linear spaces*, J. Inequal. Appl.

**2013**, no. 242. 1291.46014 10.1186/1029-242X-2013-242

*Orthogonality of bounded linear operators on complex Banach spaces*, Adv. Oper. Theory

**3**(2018), no. 3, 699–709. 1404.46015 10.15352/aot.1712-1268[15] K. Paul, D. Sain, A. Mal, and K. Mandal,

*Orthogonality of bounded linear operators on complex Banach spaces*, Adv. Oper. Theory

**3**(2018), no. 3, 699–709. 1404.46015 10.15352/aot.1712-1268

*Operator norm attainment and inner product spaces*, Linear Algebra Appl.

**439**(2013), no. 8, 2448–2452. 1291.46024 10.1016/j.laa.2013.07.008[16] D. Sain and K. Paul,

*Operator norm attainment and inner product spaces*, Linear Algebra Appl.

**439**(2013), no. 8, 2448–2452. 1291.46024 10.1016/j.laa.2013.07.008

*Operator norm attainment and Birkhoff–James orthogonality*, Linear Algebra Appl.

**476**(2015), 85–97. 1335.46008 10.1016/j.laa.2015.03.002[17] D. Sain, K. Paul, and S. Hait,

*Operator norm attainment and Birkhoff–James orthogonality*, Linear Algebra Appl.

**476**(2015), 85–97. 1335.46008 10.1016/j.laa.2015.03.002

*Rank one operators and norm of elementary operators*, Linear Algebra Appl.

**424**(2007), no. 1, 177–183. 1120.47025 10.1016/j.laa.2006.10.003[18] A. Seddik,

*Rank one operators and norm of elementary operators*, Linear Algebra Appl.

**424**(2007), no. 1, 177–183. 1120.47025 10.1016/j.laa.2006.10.003

*Exact and approximate operator parallelism*, Canad. Math. Bull.

**58**(2015), no. 1, 207–224. 1326.47008 10.4153/CMB-2014-029-4[20] A. Zamani and M. S. Moslehian,

*Exact and approximate operator parallelism*, Canad. Math. Bull.

**58**(2015), no. 1, 207–224. 1326.47008 10.4153/CMB-2014-029-4

*Norm-parallelism in the geometry of Hilbert $C^{*}$-modules*, Indag. Math. (N.S.)

**27**(2016), no. 1, 266–281. 1353.46047 10.1016/j.indag.2015.10.008[21] A. Zamani and M. S. Moslehian,

*Norm-parallelism in the geometry of Hilbert $C^{*}$-modules*, Indag. Math. (N.S.)

**27**(2016), no. 1, 266–281. 1353.46047 10.1016/j.indag.2015.10.008