A cohomology for product systems of Hilbert bimodules is defined via the $Ext$ functor. For the class of product systems corresponding to irreversible algebraic dynamics, relevant resolutions are found explicitly and it is shown how the underlying product system can be twisted by 2-cocycles. In particular, this process gives rise to cohomological deformations of the ${C}^{\ast}$-algebras associated with the product system. Concrete examples of deformations of the Cuntz’s algebra ${\mathcal{Q}}_{\mathbb{N}}$ arising this way are investigated, and we show that they are simple and purely infinite.

## References

[1] S. Balcerzyk,

*Introduction to Homological Algebra*, 2nd ed., Biblioteka Matematyczna**34**, Państwowe Wydawnictwo Naukowe, Warszawa, 1972. 0438.18008[1] S. Balcerzyk,*Introduction to Homological Algebra*, 2nd ed., Biblioteka Matematyczna**34**, Państwowe Wydawnictwo Naukowe, Warszawa, 1972. 0438.18008[2] N. Brownlowe, N. S. Larsen, and N. Stammeier,

*On $C^{*}$-algebras associated to right $LCM$ semigroups*, Trans. Amer. Math. Soc.**369**(2017), no. 1, 31–68. MR3557767 06640500 10.1090/tran/6638[2] N. Brownlowe, N. S. Larsen, and N. Stammeier,*On $C^{*}$-algebras associated to right $LCM$ semigroups*, Trans. Amer. Math. Soc.**369**(2017), no. 1, 31–68. MR3557767 06640500 10.1090/tran/6638[4] T. M. Carlsen, N. S. Larsen, A. Sims, and S. Vittadello,

*Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems*, Proc. Lond. Math. Soc. (3)**103**(2011), 563–600. MR2837016 1236.46060 10.1112/plms/pdq028[4] T. M. Carlsen, N. S. Larsen, A. Sims, and S. Vittadello,*Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems*, Proc. Lond. Math. Soc. (3)**103**(2011), 563–600. MR2837016 1236.46060 10.1112/plms/pdq028[5] J. Cuntz, “$C^{*}$-algebras associated with the $ax+b$-semigroup over $\mathbb{N}$” in

*$K$-Theory and Noncommutative Geometry (Valladolid, 2006)*, European Math. Soc., 2008, 201–215.[5] J. Cuntz, “$C^{*}$-algebras associated with the $ax+b$-semigroup over $\mathbb{N}$” in*$K$-Theory and Noncommutative Geometry (Valladolid, 2006)*, European Math. Soc., 2008, 201–215.[6] J. Cuntz and A. Vershik,

*$C^{*}$-algebras associated with endomorphisms and polymorphisms of compact abelian groups*, Commun. Math. Phys.**321**(2013), 157–179.[6] J. Cuntz and A. Vershik,*$C^{*}$-algebras associated with endomorphisms and polymorphisms of compact abelian groups*, Commun. Math. Phys.**321**(2013), 157–179.[7] R. Exel,

*Amenability for Fell bundles*, J. Reine Angew. Math.**492**(1997), 41–73. MR1488064 0881.46046[7] R. Exel,*Amenability for Fell bundles*, J. Reine Angew. Math.**492**(1997), 41–73. MR1488064 0881.46046[8] R. Exel,

*A new look at the crossed product of a $C^{*}$-algebra by an endomorphism*, Ergodic Theory Dynam. Systems**23**(2003), 1733–1750. MR2032486 1059.46050 10.1017/S0143385702001797[8] R. Exel,*A new look at the crossed product of a $C^{*}$-algebra by an endomorphism*, Ergodic Theory Dynam. Systems**23**(2003), 1733–1750. MR2032486 1059.46050 10.1017/S0143385702001797[10] N. J. Fowler,

*Discrete product systems of Hilbert bimodules*, Pacific J. Math.**204**(2002), 335–375. 1059.46034 10.2140/pjm.2002.204.335[10] N. J. Fowler,*Discrete product systems of Hilbert bimodules*, Pacific J. Math.**204**(2002), 335–375. 1059.46034 10.2140/pjm.2002.204.335[11] J. H. Hong, N. S. Larsen, and W. Szymański, “The Cuntz algebra ${\mathcal{Q}}_{\mathcal{N}}$ and $C^{*}$-algebras of product systems” in

*Progress in Operator Algebras, Noncommutative Geometry, and Their Applications*, Theta Ser. Adv. Math.**15**, Theta Foundation, Bucharest, 2012, 97–109.[11] J. H. Hong, N. S. Larsen, and W. Szymański, “The Cuntz algebra ${\mathcal{Q}}_{\mathcal{N}}$ and $C^{*}$-algebras of product systems” in*Progress in Operator Algebras, Noncommutative Geometry, and Their Applications*, Theta Ser. Adv. Math.**15**, Theta Foundation, Bucharest, 2012, 97–109.[12] J. H. Hong, N. S. Larsen, and W. Szymański,

*KMS states on Nica–Toeplitz algebras of product systems*, Internat. J. Math.**23**(2012), 1–38. MR3019425 1279.46047 10.1142/S0129167X12501236[12] J. H. Hong, N. S. Larsen, and W. Szymański,*KMS states on Nica–Toeplitz algebras of product systems*, Internat. J. Math.**23**(2012), 1–38. MR3019425 1279.46047 10.1142/S0129167X12501236[13] T. Katsura, “A construction of $C^{*}$-algebras from $C^{*}$-correspondences” in

*Advances in Quantum Dynamics (South Hadley, 2002)*, Contemp. Math.**335**, Amer. Math. Soc., Providence, 2003, 173–182.[13] T. Katsura, “A construction of $C^{*}$-algebras from $C^{*}$-correspondences” in*Advances in Quantum Dynamics (South Hadley, 2002)*, Contemp. Math.**335**, Amer. Math. Soc., Providence, 2003, 173–182.[15] B. K. Kwaśniewski and W. Szymański,

*Topological aperiodicity for product systems over semigroups of Ore type*, J. Funct. Anal.**270**(2016), no. 9, 3453–3504.[15] B. K. Kwaśniewski and W. Szymański,*Topological aperiodicity for product systems over semigroups of Ore type*, J. Funct. Anal.**270**(2016), no. 9, 3453–3504.[16] N. S. Larsen,

*Crossed products by abelian semigroups via transfer operators*, Ergodic Theory Dynam. Systems**30**(2010), no. 4, 1147–1164. 1202.46083 10.1017/S0143385709000509[16] N. S. Larsen,*Crossed products by abelian semigroups via transfer operators*, Ergodic Theory Dynam. Systems**30**(2010), no. 4, 1147–1164. 1202.46083 10.1017/S0143385709000509[18] S. Yamashita,

*Cuntz’s $ax+b$-semigroup $C^{*}$-algebra over $\mathbb{N}$ and product system $C^{*}$-algebras*, J. Ramanujan Math. Soc.**24**(2009), no. 3, 299–322.[18] S. Yamashita,*Cuntz’s $ax+b$-semigroup $C^{*}$-algebra over $\mathbb{N}$ and product system $C^{*}$-algebras*, J. Ramanujan Math. Soc.**24**(2009), no. 3, 299–322.