Open Access
April 2017 Extended spectrum and extended eigenspaces of quasinormal operators
Gilles Cassier, Hasan Alkanjo
Banach J. Math. Anal. 11(2): 266-281 (April 2017). DOI: 10.1215/17358787-3812451

Abstract

We say that a complex number λ is an extended eigenvalue of a bounded linear operator T on a Hilbert space H if there exists a nonzero bounded linear operator X acting on H, called the extended eigenvector associated to λ, and satisfying the equation TX=λXT. In this article, we describe the sets of extended eigenvalues and extended eigenvectors for the quasinormal operators.

Citation

Download Citation

Gilles Cassier. Hasan Alkanjo. "Extended spectrum and extended eigenspaces of quasinormal operators." Banach J. Math. Anal. 11 (2) 266 - 281, April 2017. https://doi.org/10.1215/17358787-3812451

Information

Received: 21 December 2015; Accepted: 20 April 2016; Published: April 2017
First available in Project Euclid: 14 January 2017

zbMATH: 1373.47018
MathSciNet: MR3597563
Digital Object Identifier: 10.1215/17358787-3812451

Subjects:
Primary: 47B20
Secondary: 47A25 , 47A60 , 47A75 , 47A80

Keywords: $\lambda$-intertwining operators , extended eigenspaces , extended eigenvalues , intertwining values , quasinormal operators

Rights: Copyright © 2017 Tusi Mathematical Research Group

Vol.11 • No. 2 • April 2017
Back to Top