Abstract
The commutation matrix $K$ is defined as a square matrix containing only zeroes and ones. Its main properties are that it transforms vecA into vecA', and that it reverses the order of a Kronecker product. An analytic expression for $K$ is given and many further properties are derived. Subsequently, these properties are applied to some problems connected with the normal distribution. The expectation is derived of $\varepsilon' A\varepsilon\cdot\varepsilon' B\varepsilon\cdot\varepsilon'C\varepsilon$, where $\varepsilon \sim N(0, V)$, and $A, B, C$ are symmetric. Further, the expectation and covariance matrix of $x \otimes y$ are found, where $x$ and $y$ are normally distributed dependent variables. Finally, the variance matrix of the (noncentral) Wishart distribution is derived.
Citation
Jan R. Magnus. H. Neudecker. "The Commutation Matrix: Some Properties and Applications." Ann. Statist. 7 (2) 381 - 394, March, 1979. https://doi.org/10.1214/aos/1176344621
Information